Nonvolatile memories have emerged in recent years and have become a leading candidate towards replacing dynamic and static random-access memory devices.In this article,the performances of T1O_2 and TaO_2nonvolatile me...Nonvolatile memories have emerged in recent years and have become a leading candidate towards replacing dynamic and static random-access memory devices.In this article,the performances of T1O_2 and TaO_2nonvolatile memristive devices were compared and the factors that make TaO_2 memristive devices better than T1O_2 memristive devices were studied.TaO_2 memristive devices have shown better endurance performances(10~8times more switching cycles) and faster switching speed(5 times) than TiO_2 memristive devices.Electroforming of TaO_2 memristive devices requires ~ 4.5 times less energy than TiO_2 memristive devices of a similar size.The retention period of TaO_2 memristive devices is expected to exceed 10 years with sufficient experimental evidence.In addition to comparing device performances,this article also explains the differences in physical device structure,switching mechanism,and resistance switching performances of TiO_2 and TaO_2 memristive devices.This article summarizes the reasons that give TaO_2 memristive devices the advantage over TiO_2 memristive devices,in terms of electroformation,switching speed,and endurance.展开更多
文摘Nonvolatile memories have emerged in recent years and have become a leading candidate towards replacing dynamic and static random-access memory devices.In this article,the performances of T1O_2 and TaO_2nonvolatile memristive devices were compared and the factors that make TaO_2 memristive devices better than T1O_2 memristive devices were studied.TaO_2 memristive devices have shown better endurance performances(10~8times more switching cycles) and faster switching speed(5 times) than TiO_2 memristive devices.Electroforming of TaO_2 memristive devices requires ~ 4.5 times less energy than TiO_2 memristive devices of a similar size.The retention period of TaO_2 memristive devices is expected to exceed 10 years with sufficient experimental evidence.In addition to comparing device performances,this article also explains the differences in physical device structure,switching mechanism,and resistance switching performances of TiO_2 and TaO_2 memristive devices.This article summarizes the reasons that give TaO_2 memristive devices the advantage over TiO_2 memristive devices,in terms of electroformation,switching speed,and endurance.