期刊文献+
共找到7,509篇文章
< 1 2 250 >
每页显示 20 50 100
Data-Driven Modeling for Wind Turbine Blade Loads Based on Deep Neural Network
1
作者 Jianyong Ao Yanping Li +2 位作者 Shengqing Hu Songyu Gao Qi Yao 《Energy Engineering》 EI 2024年第12期3825-3841,共17页
Blades are essential components of wind turbines.Reducing their fatigue loads during operation helps to extend their lifespan,but it is difficult to quickly and accurately calculate the fatigue loads of blades.To solv... Blades are essential components of wind turbines.Reducing their fatigue loads during operation helps to extend their lifespan,but it is difficult to quickly and accurately calculate the fatigue loads of blades.To solve this problem,this paper innovatively designs a data-driven blade load modeling method based on a deep learning framework through mechanism analysis,feature selection,and model construction.In the mechanism analysis part,the generation mechanism of blade loads and the load theoretical calculationmethod based on material damage theory are analyzed,and four measurable operating state parameters related to blade loads are screened;in the feature extraction part,15 characteristic indicators of each screened parameter are extracted in the time and frequency domain,and feature selection is completed through correlation analysis with blade loads to determine the input parameters of data-driven modeling;in the model construction part,a deep neural network based on feedforward and feedback propagation is designed to construct the nonlinear coupling relationship between the unit operating parameter characteristics and blade loads.The results show that the proposed method mines the wind turbine operating state characteristics highly correlated with the blade load,such as the standard deviation of wind speed.The model built using these characteristics has reasonable calculation and fitting capabilities for the blade load and shows a better fitting level for untrained out-of-sample data than the traditional scheme.Based on the mean absolute percentage error calculation,the modeling accuracy of the two blade loads can reach more than 90%and 80%,respectively,providing a good foundation for the subsequent optimization control to suppress the blade load. 展开更多
关键词 Wind turbine BLADE fatigue load modeling deep neural network
下载PDF
Dynamic load balancing based on restricted multicast tree in triplet-based hierarchical interconnection network
2
作者 刘滨 石峰 +2 位作者 高玉金 计卫星 宋红 《Journal of Southeast University(English Edition)》 EI CAS 2008年第1期33-37,共5页
To solve the load balancing problem in a triplet-based hierarchical interconnection network(THIN) system, a dynamic load balancing (DLB)algorithm--THINDLBA, which adopts multicast tree (MT)technology to improve ... To solve the load balancing problem in a triplet-based hierarchical interconnection network(THIN) system, a dynamic load balancing (DLB)algorithm--THINDLBA, which adopts multicast tree (MT)technology to improve the efficiency of interchanging load information, is presented. To support the algorithm, a complete set of DLB messages and a schema of maintaining DLB information in each processing node are designed. The load migration request messages from the heavily loaded node (HLN)are spread along an MT whose root is the HLN. And the lightly loaded nodes(LLNs) covered by the MT are the candidate destinations of load migration; the load information interchanged between the LLNs and the HLN can be transmitted along the MT. So the HLN can migrate excess loads out as many as possible during a one time execution of the THINDLBA, and its load state can be improved as quickly as possible. To avoid wrongly transmitted or redundant DLB messages due to MT overlapping, the MT construction is restricted in the design of the THINDLBA. Through experiments, the effectiveness of four DLB algorithms are compared, and the results show that the THINDLBA can effectively decrease the time costs of THIN systems in dealing with large scale computeintensive tasks more than others. 展开更多
关键词 triplet-based hierarchical interconnection network dynamic load balancing multicast tree
下载PDF
A priority-based dynamic load transfer algorithm for cellular/WLAN integrated networks
3
作者 陈赓 夏玮玮 +1 位作者 许波 沈连丰 《Journal of Southeast University(English Edition)》 EI CAS 2012年第1期14-20,共7页
For the integration network of a cellular network and a wireless local area network (WLAN), a priority-based dynamic load transfer (PDLT) algorithm is proposed. The dynamic vertical handoffs by call admission cont... For the integration network of a cellular network and a wireless local area network (WLAN), a priority-based dynamic load transfer (PDLT) algorithm is proposed. The dynamic vertical handoffs by call admission control are jointly determined by the network conditions and the traffic characteristics in combination with the location-condition of mobile terminals. When there is no bandwidth resource available in the cellular network or WLAN, the proposed PDLT algorithm allows an incoming voice call or data call within the overlapping area of the cellular network and the WLAN to be directed to the spare network; meanwhile, by dynamically computing the occupancy of the bandwidth resource, the proposed PDLT algorithm also allows an ongoing voice call or data communication to be transferred to the network with a sufficient bandwidth resource according to the given threshold to balance the number of voice/data calls in the two networks. The analysis results of a two-dimensional Markov model and the simulation results show that the PDLT algorithm can effectively enhance the whole integrated network' s traffic, reduce the blocking probability of new calls and increase the data throughput, and thus decrease the response time for various services. 展开更多
关键词 cellular network WLAN dynamic load transfer blocking probability Markov model
下载PDF
Lazy loading algorithm for traffic assignment of road networks under fixed charge condition
4
作者 赵金宝 邓卫 《Journal of Southeast University(English Edition)》 EI CAS 2011年第2期185-187,共3页
The measures of path charge are important considerations in traffic assignment of road networks. Factors, such as travel time, fixed charge and traffic congestion which affect road users' choices of trip paths, are a... The measures of path charge are important considerations in traffic assignment of road networks. Factors, such as travel time, fixed charge and traffic congestion which affect road users' choices of trip paths, are analyzed. Travelers usually decide their trip paths based on their personal habits, preferences and the information at hand. By considering both deterministic and stochastic factors which affect the value of time (VOT) during the process of path choosing, a variational inequality model is proposed to describe the problem of traffic assignment. A lazy loading algorithm for traffic assignment is designed to solve the proposed model, and the calculation steps are given. Numerical experiment results show that compared with the all-or-nothing assignment, the proposed model and the algorithm can provide more optimal traffic assignments for road networks. The results of this study can be used to optimize traffic planning and management. 展开更多
关键词 traffic assignment road networks fixed charge lazy loading algorithm
下载PDF
A Novel Load Balancing Strategy of Software-Defined Cloud/Fog Networking in the Internet of Vehicles 被引量:13
5
作者 Xiuli He Zhiyuan Ren +1 位作者 Chenhua Shi Jian Fang 《China Communications》 SCIE CSCD 2016年第S2期140-149,共10页
The Internet of Vehicles(IoV)has been widely researched in recent years,and cloud computing has been one of the key technologies in the IoV.Although cloud computing provides high performance compute,storage and networ... The Internet of Vehicles(IoV)has been widely researched in recent years,and cloud computing has been one of the key technologies in the IoV.Although cloud computing provides high performance compute,storage and networking services,the IoV still suffers with high processing latency,less mobility support and location awareness.In this paper,we integrate fog computing and software defined networking(SDN) to address those problems.Fog computing extends computing and storing to the edge of the network,which could decrease latency remarkably in addition to enable mobility support and location awareness.Meanwhile,SDN provides flexible centralized control and global knowledge to the network.In order to apply the software defined cloud/fog networking(SDCFN) architecture in the IoV effectively,we propose a novel SDN-based modified constrained optimization particle swarm optimization(MPSO-CO) algorithm which uses the reverse of the flight of mutation particles and linear decrease inertia weight to enhance the performance of constrained optimization particle swarm optimization(PSO-CO).The simulation results indicate that the SDN-based MPSO-CO algorithm could effectively decrease the latency and improve the quality of service(QoS) in the SDCFN architecture. 展开更多
关键词 internet of vehicles cloud computing cloud/fog network software defined networking load balancing
下载PDF
Load Balancing-Based Routing Optimization Mechanism for Power Communication Networks 被引量:12
6
作者 Ningzhe Xing Siya Xu +1 位作者 Sidong Zhang Shaoyong Guo 《China Communications》 SCIE CSCD 2016年第8期169-176,共8页
In power communication networks, it is a challenge to decrease the risk of different services efficiently to improve operation reliability. One of the important factor in reflecting communication risk is service route... In power communication networks, it is a challenge to decrease the risk of different services efficiently to improve operation reliability. One of the important factor in reflecting communication risk is service route distribution. However, existing routing algorithms do not take into account the degree of importance of services, thereby leading to load unbalancing and increasing the risks of services and networks. A routing optimization mechanism based on load balancing for power communication networks is proposed to address the abovementioned problems. First, the mechanism constructs an evaluation model to evaluate the service and network risk degree using combination of devices, service load, and service characteristics. Second, service weights are determined with modified relative entropy TOPSIS method, and a balanced service routing determination algorithm is proposed. Results of simulations on practical network topology show that the mechanism can optimize the network risk degree and load balancing degree efficiently. 展开更多
关键词 power communication networks load balancing routing optimization
下载PDF
Load-redistribution strategy based on time-varying load against cascading failure of complex network 被引量:4
7
作者 刘军 熊庆宇 +2 位作者 石欣 王楷 石为人 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第7期371-377,共7页
Cascading failure can cause great damage to complex networks, so it is of great significance to improve the network robustness against cascading failure. Many previous existing works on load-redistribution strategies ... Cascading failure can cause great damage to complex networks, so it is of great significance to improve the network robustness against cascading failure. Many previous existing works on load-redistribution strategies require global information, which is not suitable for large scale networks, and some strategies based on local information assume that the load of a node is always its initial load before the network is attacked, and the load of the failure node is redistributed to its neighbors according to their initial load or initial residual capacity. This paper proposes a new load-redistribution strategy based on local information considering an ever-changing load. It redistributes the loads of the failure node to its nearest neighbors according to their current residual capacity, which makes full use of the residual capacity of the network. Experiments are conducted on two typical networks and two real networks, and the experimental results show that the new load-redistribution strategy can reduce the size of cascading failure efficiently. 展开更多
关键词 load redistribution time-varying load cascading failure complex networks
下载PDF
Application of artificial neural networks in optimal tuning of tuned mass dampers implemented in high-rise buildings subjected to wind load 被引量:8
8
作者 Meysam Ramezani Akbar Bathaei Amir K.Ghorbani-Tanha 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第4期903-915,共13页
High-rise buildings are usually considered as flexible structures with low inherent damping. Therefore, these kinds of buildings are susceptible to wind-induced vibration. Tuned Mass Damper(TMD) can be used as an ef... High-rise buildings are usually considered as flexible structures with low inherent damping. Therefore, these kinds of buildings are susceptible to wind-induced vibration. Tuned Mass Damper(TMD) can be used as an effective device to mitigate excessive vibrations. In this study, Artificial Neural Networks is used to find optimal mechanical properties of TMD for high-rise buildings subjected to wind load. The patterns obtained from structural analysis of different multi degree of freedom(MDF) systems are used for training neural networks. In order to obtain these patterns, structural models of some systems with 10 to 80 degrees-of-freedoms are built in MATLAB/SIMULINK program. Finally, the optimal properties of TMD are determined based on the objective of maximum displacement response reduction. The Auto-Regressive model is used to simulate the wind load. In this way, the uncertainties related to wind loading can be taken into account in neural network’s outputs. After training the neural network, it becomes possible to set the frequency and TMD mass ratio as inputs and get the optimal TMD frequency and damping ratio as outputs. As a case study, a benchmark 76-story office building is considered and the presented procedure is used to obtain optimal characteristics of the TMD for the building. 展开更多
关键词 artificial neural networks tuned mass damper wind load auto-regressive model optimal frequency anddamping
下载PDF
Hybrid-Traffic-Detour Based Load Balancing for Onboard Routing in LEO Satellite Networks 被引量:11
9
作者 Peilong Liu Hongyu Chen +2 位作者 Songjie Wei Limin Li Zhencai Zhu 《China Communications》 SCIE CSCD 2018年第6期28-41,共14页
To deal with the dynamic and imbalanced traffic requirements in Low Earth Orbit satellite networks, several distributed load balancing routing schemes have been proposed. However, because of the lack of global view, t... To deal with the dynamic and imbalanced traffic requirements in Low Earth Orbit satellite networks, several distributed load balancing routing schemes have been proposed. However, because of the lack of global view, these schemes may lead to cascading congestion in regions with high volume of traffic. To solve this problem, a Hybrid-Traffic-Detour based Load Balancing Routing(HLBR) scheme is proposed, where a Long-Distance Traffic Detour(LTD) method is devised and coordinates with distributed traffic detour method to perform self-adaptive load balancing. The forwarding path of LTD is acquired by the Circuitous Multipath Calculation(CMC) based on prior geographical information, and activated by the LTDShift-Trigger(LST) through real-time congestion perception. Simulation results show that the HLBR can mitigate cascading congestion and achieve efficient traffic distribution. 展开更多
关键词 satellite networks load balancing cascading congestion traffic detour
下载PDF
Prediction of Rolling Load in Hot Strip Mill byInnovations Feedback Neural Networks 被引量:3
10
作者 ZHANG Li ZHANG Li-yong +1 位作者 WANG Jun MA Fu-ting 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第2期42-45,51,共5页
Because the structure of the classical mathematical model of rolling load is simple, even with the self-adapting technology, it is difficult to accommodate the increasing dimensional accuracy. Motivated by this fact, ... Because the structure of the classical mathematical model of rolling load is simple, even with the self-adapting technology, it is difficult to accommodate the increasing dimensional accuracy. Motivated by this fact, an Innovations Feedback Neural Networks (IFNN) was presented based on the idea of Kalman prediction. The neural networks used the Back Propagation (BP) algorithm and applied it to the prediction of rolling load in hot strip mill. The theoretical results and the off-line simulation show that the prediction capability of IFNN is better than that of normal BP networks, namely, for the prediction of the rolling load in hot strip mill, the prediction precision of IFNN is higher than that of normal BP networks. Finally, a relative complete rolling load prediction system was developed on Windows 2003/XP platform using the OOP programming method and the SQL server2000 database. With this sys- tem, the rolling load of a 1700 strip mill was calculated, and the prediction results obtained correspond well with the field data. It shows that IFNN is valid for rolling load prediction. 展开更多
关键词 rolling load prediction INNOVATION neural network hot strip mill
下载PDF
Load Reduction Test Method of Similarity Theory and BP Neural Networks of Large Cranes 被引量:4
11
作者 YANG Ruigang DUAN Zhibin +2 位作者 LU Yi WANG Lei XU Gening 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第1期145-151,共7页
Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solv... Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solve the loading problems of large-tonnage cranes during testing, an equivalency test is proposed based on the similarity theory and BP neural networks. The maximum stress and displacement of a large bridge crane is tested in small loads, combined with the training neural network of a similar structure crane through stress and displacement data which is collected by a physics simulation progressively loaded to a static load test load within the material scope of work. The maximum stress and displacement of a crane under a static load test load can be predicted through the relationship of stress, displacement, and load. By measuring the stress and displacement of small tonnage weights, the stress and displacement of large loads can be predicted, such as the maximum load capacity, which is 1.25 times the rated capacity. Experimental study shows that the load reduction test method can reflect the lift capacity of large bridge cranes. The load shedding predictive analysis for Sanxia 1200 t bridge crane test data indicates that when the load is 1.25 times the rated lifting capacity, the predicted displacement and actual displacement error is zero. The method solves the problem that lifting capacities are difficult to obtain and testing accidents are easily possible when 1.25 times related weight loads are tested for large tonnage cranes. 展开更多
关键词 similarity theory BP neural network large bridge crane load reduction equivalent test method
下载PDF
The Development of Highly Loaded Turbine Rotating Blades by Using 3D Optimization Design Method of Turbomachinery Blades Based on Artificial Neural Network & Genetic Algorithm 被引量:3
12
作者 周凡贞 冯国泰 蒋洪德 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2003年第4期198-202,共5页
In order to improve turbine internal efficiency and lower manufacturing cost, a new highly loaded rotating blade has been developed. The 3D optimization design method based on artificial neural network and genetic alg... In order to improve turbine internal efficiency and lower manufacturing cost, a new highly loaded rotating blade has been developed. The 3D optimization design method based on artificial neural network and genetic algorithm is adopted to construct the blade shape. The blade is stacked by the center of gravity in radial direction with five sections. For each blade section, independent suction and pressure sides are constructed from the camber line using Bezier curves. Three-dimensional flow analysis is carried out to verify the performance of the new blade. It is found that the new blade has improved the blade performance by 0.5%. Consequently, it is verified that the new blade is effective to improve the turbine internal efficiency and to lower the turbine weight and manufacturing cost by reducing the blade number by about 15%. 展开更多
关键词 optimization design highly loaded rotating blades artificial neural network genetic algorithm
下载PDF
Using Artificial Neural Network to Estimate Sediment Load in Ungauged Catchments of the Tonle Sap River Basin, Cambodia 被引量:5
13
作者 Sokchhay Heng Tadashi Suetsugi 《Journal of Water Resource and Protection》 2013年第2期111-123,共13页
Concern on alteration of sediment natural flow caused by developments of water resources system, has been addressed in many river basins around the world especially in developing and remote regions where sediment data... Concern on alteration of sediment natural flow caused by developments of water resources system, has been addressed in many river basins around the world especially in developing and remote regions where sediment data are poorly gauged or ungauged. Since suspended sediment load (SSL) is predominant, the objectives of this research are to: 1) simulate monthly average SSL (SSLm) of four catchments using artificial neural network (ANN);2) assess the application of the calibrated ANN (Cal-ANN) models in three ungauged catchment representatives (UCR) before using them to predict SSLm of three actual ungauged catchments (AUC) in the Tonle Sap River Basin;and 3) estimate annual SSL (SSLA) of each AUC for the case of with and without dam-reservoirs. The model performance for total load (SSLT) prediction was also investigated because it is important for dam-reservoir management. For model simulation, ANN yielded very satisfactory results with determination coefficient (R2) ranging from 0.81 to 0.94 in calibration stage and 0.63 to 0.87 in validation stage. The Cal-ANN models also performed well in UCRs with R2 ranging from 0.59 to 0.64. From the result of this study, one can estimate SSLm and SSLT of ungauged catchments with an accuracy of 0.61 in term of R2 and 34.06% in term of absolute percentage bias, respectively. SSLA of the AUCs was found between 159,281 and 723,580 t/year. In combination with Brune’s method, the impact of dam-reservoirs could reduce SSLA between 47% and 68%. This result is key information for sustainable development of such infrastructures. 展开更多
关键词 Artificial Neural network Suspended SEDIMENT load Ungauged CATCHMENT Lower MEKONG BASIN Tonle Sap River BASIN
下载PDF
Earth slope reliability analysis under seismic loadings using neural network 被引量:8
14
作者 彭怀生 邓建 古德生 《Journal of Central South University of Technology》 EI 2005年第5期606-610,共5页
A new method was proposed to cope with the earth slope reliability problem under seismic loadings. The algorithm integrates the concepts of artificial neural network, the first order second moment reliability method a... A new method was proposed to cope with the earth slope reliability problem under seismic loadings. The algorithm integrates the concepts of artificial neural network, the first order second moment reliability method and the deterministic stability analysis method of earth slope. The performance function and its derivatives in slope stability analysis under seismic loadings were approximated by a trained multi-layer feed-forward neural network with differentiable transfer functions. The statistical moments calculated from the performance function values and the corresponding gradients using neural network were then used in the first order second moment method for the calculation of the reliability index in slope safety analysis. Two earth slope examples were presented for illustrating the applicability of the proposed approach. The new method is effective in slope reliability analysis. And it has potential application to other reliability problems of complicated engineering structure with a considerably large number of random variables. 展开更多
关键词 slope reliability analysis neural network seismic loadings
下载PDF
Forecasting model of residential load based on general regression neural network and PSO-Bayes least squares support vector machine 被引量:5
15
作者 何永秀 何海英 +1 位作者 王跃锦 罗涛 《Journal of Central South University》 SCIE EI CAS 2011年第4期1184-1192,共9页
Firstly,general regression neural network(GRNN) was used for variable selection of key influencing factors of residential load(RL) forecasting.Secondly,the key influencing factors chosen by GRNN were used as the input... Firstly,general regression neural network(GRNN) was used for variable selection of key influencing factors of residential load(RL) forecasting.Secondly,the key influencing factors chosen by GRNN were used as the input and output terminals of urban and rural RL for simulating and learning.In addition,the suitable parameters of final model were obtained through applying the evidence theory to combine the optimization results which were calculated with the PSO method and the Bayes theory.Then,the model of PSO-Bayes least squares support vector machine(PSO-Bayes-LS-SVM) was established.A case study was then provided for the learning and testing.The empirical analysis results show that the mean square errors of urban and rural RL forecast are 0.02% and 0.04%,respectively.At last,taking a specific province RL in China as an example,the forecast results of RL from 2011 to 2015 were obtained. 展开更多
关键词 residential load load forecasting general regression neural network (GRNN) evidence theory PSO-Bayes least squaressupport vector machine
下载PDF
Load Balancing Algorithm for Migrating Switches in Software-Dened Vehicular Networks 被引量:4
16
作者 Himanshi Babbar Shalli Rani +3 位作者 Mehedi Masud Sahil Verma Divya Anand Nz Jhanjhi 《Computers, Materials & Continua》 SCIE EI 2021年第4期1301-1316,共16页
In Software-Dened Networks(SDN),the divergence of the control interface from the data plane provides a unique platform to develop a programmable and exible network.A single controller,due to heavy load trafc triggered... In Software-Dened Networks(SDN),the divergence of the control interface from the data plane provides a unique platform to develop a programmable and exible network.A single controller,due to heavy load trafc triggered by different intelligent devices can not handle due to it’s restricted capability.To manage this,it is necessary to implement multiple controllers on the control plane to achieve quality network performance and robustness.The ow of data through the multiple controllers also varies,resulting in an unequal distribution of load between different controllers.One major drawback of the multiple controllers is their constant conguration of the mapping of the switch-controller,quickly allowing unequal distribution of load between controllers.To overcome this drawback,Software-Dened Vehicular Networking(SDVN)has evolved as a congurable and scalable network,that has quickly achieved attraction in wireless communications from research groups,businesses,and industries administration.In this paper,we have proposed a load balancing algorithm based on latency for multiple SDN controllers.It acknowledges the evolving characteristics of real-time latency vs.controller loads.By choosing the required latency and resolving multiple overloads simultaneously,our proposed algorithm solves the loadbalancing problems with multiple overloaded controllers in the SDN control plane.In addition to the migration,our algorithm has improved 25%latency as compared to the existing algorithms. 展开更多
关键词 Software-dened networking load balancing multiple controllers ryu controller mininet
下载PDF
On the use of the genetic programming for balanced load distribution in software-defined networks 被引量:3
17
作者 Shahram Jamali Amin Badirzadeh Mina Soltani Siapoush 《Digital Communications and Networks》 SCIE 2019年第4期288-296,共9页
As a new networking paradigm,Software-Defined Networking(SDN)enables us to cope with the limitations of traditional networks.SDN uses a controller that has a global view of the network and switch devices which act as ... As a new networking paradigm,Software-Defined Networking(SDN)enables us to cope with the limitations of traditional networks.SDN uses a controller that has a global view of the network and switch devices which act as packet forwarding hardware,known as“OpenFlow switches”.Since load balancing service is essential to distribute workload across servers in data centers,we propose an effective load balancing scheme in SDN,using a genetic programming approach,called Genetic Programming based Load Balancing(GPLB).We formulate the problem to find a path:1)with the best bottleneck switch which has the lowest capacity within bottleneck switches of each path,2)with the shortest path,and 3)requiring the less possible operations.For the purpose of choosing the real-time least loaded path,GPLB immediately calculates the integrated load of paths based on the information that receives from the SDN controller.Hence,in this design,the controller sends the load information of each path to the load balancing algorithm periodically and then the load balancing algorithm returns a least loaded path to the controller.In this paper,we use the Mininet emulator and the OpenDaylight controller to evaluate the effectiveness of the GPLB.The simulative study of the GPLB shows that there is a big improvement in performance metrics and the latency and the jitter are minimized.The GPLB also has the maximum throughput in comparison with related works and has performed better in the heavy traffic situation.The results show that our model stands smartly while not increasing further overhead. 展开更多
关键词 Software-defined networking OpenFlow Mininet OpenDaylight load balancing
下载PDF
Comparison between Multi-Layer Perceptron and Radial Basis Function Networks for Sediment Load Estimation in a Tropical Watershed 被引量:1
18
作者 Hadi Memarian Siva Kumar Balasundram 《Journal of Water Resource and Protection》 2012年第10期870-876,共7页
Prediction of highly non-linear behavior of suspended sediment flow in rivers has prime importance in environmental studies and watershed management. In this study, the predictive performance of two Artificial Neural ... Prediction of highly non-linear behavior of suspended sediment flow in rivers has prime importance in environmental studies and watershed management. In this study, the predictive performance of two Artificial Neural Networks (ANNs), namely Radial Basis Function (RBF) and Multi-Layer Perceptron (MLP) were compared. Time series data of daily suspended sediment discharge and water discharge at the Langat River, Malaysia were used for training and testing the networks. Mean Square Error (MSE), Normalized Mean Square Error (NMSE) and correlation coefficient (r) were used for performance evaluation of the models. Using the testing data set, both models produced a similar level of robustness in sediment load simulation. The MLP network model showed a slightly better output than the RBF network model in predicting suspended sediment discharge, especially in the training process. However, both ANNs showed a weak robustness in estimating large magnitudes of sediment load. 展开更多
关键词 SEDIMENT load Neural network MLP RBF HULU Langat WATERSHED
下载PDF
Long-lasting,reinforced electrical networking in a high-loading Li_(2)S cathode for high-performance lithium–sulfur batteries 被引量:3
19
作者 Hun Kim Kyeong-Jun Min +4 位作者 Sangin Bang Jang-Yeon Hwang Jung Ho Kim Chong SYoon Yang-Kook Sun 《Carbon Energy》 SCIE CSCD 2023年第8期1-14,共14页
Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein... Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein,a high-loading Li_(2)S-based cathode with micrometric Li_(2)S particles composed of two-dimensional graphene(Gr)and one-dimensional carbon nanotubes(CNTs)in a compact geometry is developed,and the role of CNTs in stable cycling of high-capacity Li–S batteries is emphasized.In a dimensionally combined carbon matrix,CNTs embedded within the Gr sheets create robust and sustainable electron diffusion pathways while suppressing the passivation of the active carbon surface.As a unique point,during the first charging process,the proposed cathode is fully activated through the direct conversion of Li_(2)S into S_(8) without inducing lithium polysulfide formation.The direct conversion of Li_(2)S into S_(8) in the composite cathode is ubiquitously investigated using the combined study of in situ Raman spectroscopy,in situ optical microscopy,and cryogenic transmission electron microscopy.The composite cathode demonstrates unprecedented electrochemical properties even with a high Li_(2)S loading of 10 mg cm^(–2);in particular,the practical and safe Li–S full cell coupled with a graphite anode shows ultra-long-term cycling stability over 800 cycles. 展开更多
关键词 carbon nanotubes electrical network high energy high loading Li_(2)S cathode lithium-sulfur batteries
下载PDF
Analysis of overload-based cascading failure in multilayer spatial networks 被引量:1
20
作者 Min Zhang Xiao-Juan Wang +2 位作者 Lei Ji Mei Song Zhong-Hua Liao 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第9期404-414,共11页
Many complex networks in real life are embedded in space and most infrastructure networks are interdependent,such as the power system and the transport network.In this paper,we construct two cascading failure models o... Many complex networks in real life are embedded in space and most infrastructure networks are interdependent,such as the power system and the transport network.In this paper,we construct two cascading failure models on the multilayer spatial network.In our research,the distance l between nodes within the layer obeys the exponential distribution P(l)~exp(-l/ζ),and the length r of dependency link between layers is defined according to node position.An entropy approach is applied to analyze the spatial network structure and reflect the difference degree between nodes.Two metrics,namely dynamic network size and dynamic network entropy,are proposed to evaluate the spatial network robustness and stability.During the cascading failure process,the spatial network evolution is analyzed,and the numbers of failure nodes caused by different reasons are also counted,respectively.Besides,we discuss the factors affecting network robustness.Simulations demonstrate that the larger the values of average degree<k>,the stronger the network robustness.As the length r decreases,the network performs better.When the probability p is small,asζdecreases,the network robustness becomes more reliable.When p is large,the network robustness manifests better performance asζincreases.These results provide insight into enhancing the robustness,maintaining the stability,and adjusting the difference degree between nodes of the embedded spatiality systems. 展开更多
关键词 cascading failure multilayer network load distribution spatial network ENTROPY
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部