In order to improve reservoir fluid recognition, the sensitivity of array resistivity response to the difference of the invasion properties in both oil-bearing layers and water layers is analyzed. Then the primary inv...In order to improve reservoir fluid recognition, the sensitivity of array resistivity response to the difference of the invasion properties in both oil-bearing layers and water layers is analyzed. Then the primary inversion is carried out based on the array resistivity log. The mud invasion process is numerically simulated based on the oil-water flow equation and water convection diffusion equation. The results show that the radial resistivity of a fresh mud-invaded oil-bearing layer presents complex distribution characteristics, such as nonlinear increase, increasing to decreasing and low resistivity annulus, and the resistive invasion profile of a water layer is monotonic. Under specific conditions, array resistivity log can reflect these changes and the array induction log is more sensitive. Nevertheless, due to the effect of factors like large invasion depth, reservoir physical and oil-bearing properties, the measured apparent resistivity may differ greatly from the actual mud filtrate invasion profile in an oil-bearing layer. We proposed a five-parameter formation model to simulate the complex resistivity distribution of fresh mud-invaded formation. Then, based on the principle of non-linear least squares, the measured array resistivity log is used for inversion with the Marquardt method. It is demonstrated that the inverted resistivity is typically non-monotonic in oil-bearing layers and is monotonic in water layers. Processing of some field data shows that this is helpful in achieving efficient reservoir fluid recognition.展开更多
The influence of pore structure difference on rock electrical characteristics of reservoir and oil reservoir was analyzed taking Triassic Chang 6 reservoir in Block Yanwumao in the middle of Ordos Basin as an example....The influence of pore structure difference on rock electrical characteristics of reservoir and oil reservoir was analyzed taking Triassic Chang 6 reservoir in Block Yanwumao in the middle of Ordos Basin as an example. The relationship between the pore structure difference and the low resistivity oil layer was revealed and demonstrated through core observation, lab experiments, geological research, well log interpretation and trial production etc. The results show that there were two kinds of oil layers in Chang 6 oil layer set, normal oil layer and low resistivity oil layer in the region, corresponding to two types of pore structures, pore type mono-medium and micro-fracture-pore type double-medium; the development of micro-fracture changed greatly the micro-pore structure of the reservoir, and the pore structure difference had an important influence on the rock electrical characteristics of the extra-low permeability sandstone reservoir and oil reservoir; the normal oil layers had obvious characteristics of pore-type mono-medium, and were concentrated in Chang 61, Chang 6232 and Chang 62; the low resistivity oil layers had obvious characteristics of micro-fracture-pore type double-medium, which were mainly distributed in Chang 612 and Chang 63. The mud filtrate penetrated deep into the oil layers along the micro-cracks, leading to sharp reduction of resistivity, and thus low resistivity of the oil layer; the low resistivity oil layers had better storage capacity and higher productivity than the normal oil layers.展开更多
基金funded by the National Natural Science Foundation (41174009)National Major Science &Technology Projects (2011ZX05020, 2011ZX05035,2011ZX05003, 2011ZX05007)
文摘In order to improve reservoir fluid recognition, the sensitivity of array resistivity response to the difference of the invasion properties in both oil-bearing layers and water layers is analyzed. Then the primary inversion is carried out based on the array resistivity log. The mud invasion process is numerically simulated based on the oil-water flow equation and water convection diffusion equation. The results show that the radial resistivity of a fresh mud-invaded oil-bearing layer presents complex distribution characteristics, such as nonlinear increase, increasing to decreasing and low resistivity annulus, and the resistive invasion profile of a water layer is monotonic. Under specific conditions, array resistivity log can reflect these changes and the array induction log is more sensitive. Nevertheless, due to the effect of factors like large invasion depth, reservoir physical and oil-bearing properties, the measured apparent resistivity may differ greatly from the actual mud filtrate invasion profile in an oil-bearing layer. We proposed a five-parameter formation model to simulate the complex resistivity distribution of fresh mud-invaded formation. Then, based on the principle of non-linear least squares, the measured array resistivity log is used for inversion with the Marquardt method. It is demonstrated that the inverted resistivity is typically non-monotonic in oil-bearing layers and is monotonic in water layers. Processing of some field data shows that this is helpful in achieving efficient reservoir fluid recognition.
基金Supported by the Natural Science Foundation of Shaanxi Province,China(2010JM5003)
文摘The influence of pore structure difference on rock electrical characteristics of reservoir and oil reservoir was analyzed taking Triassic Chang 6 reservoir in Block Yanwumao in the middle of Ordos Basin as an example. The relationship between the pore structure difference and the low resistivity oil layer was revealed and demonstrated through core observation, lab experiments, geological research, well log interpretation and trial production etc. The results show that there were two kinds of oil layers in Chang 6 oil layer set, normal oil layer and low resistivity oil layer in the region, corresponding to two types of pore structures, pore type mono-medium and micro-fracture-pore type double-medium; the development of micro-fracture changed greatly the micro-pore structure of the reservoir, and the pore structure difference had an important influence on the rock electrical characteristics of the extra-low permeability sandstone reservoir and oil reservoir; the normal oil layers had obvious characteristics of pore-type mono-medium, and were concentrated in Chang 61, Chang 6232 and Chang 62; the low resistivity oil layers had obvious characteristics of micro-fracture-pore type double-medium, which were mainly distributed in Chang 612 and Chang 63. The mud filtrate penetrated deep into the oil layers along the micro-cracks, leading to sharp reduction of resistivity, and thus low resistivity of the oil layer; the low resistivity oil layers had better storage capacity and higher productivity than the normal oil layers.