期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
On Gorenstein Resolution Dimensions of Complexes
1
作者 CUI Jun-feng 《Chinese Quarterly Journal of Mathematics》 2017年第2期216-220,共5页
Let W be a self-orthogonal class of R-modules. We prove that W-Gorenstein resolution dimension of a complex X is equivalent to the supremum of W-Gorenstein resolution dimension of modules X_i for all i ∈ Z.
关键词 complex orthogonal class resolution dimension
下载PDF
Relative Left Derived Functors of Tensor Product Functors 被引量:1
2
作者 Jun Fu WANG Zhao Yong HUANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2016年第7期753-764,共12页
We introduce and study the relative lett derive functor Torn(£,£1) category, which unifies several related left derived functors. Then we give some criteria for computing the -resolution dimensions of modules in t... We introduce and study the relative lett derive functor Torn(£,£1) category, which unifies several related left derived functors. Then we give some criteria for computing the -resolution dimensions of modules in terms of the properties of Torn(£,£1) . We also construct a complete and hereditary cotorsion pair relative to balanced pairs. Some known results are obtained as corollaries. 展开更多
关键词 Tensor product functors relative left derived functors balanced pairs cotorsion pairs (co)resolution dimension
原文传递
Applications of balanced pairs 被引量:3
3
作者 LI HuanHuan WANG JunFu HUANG ZhaoYong 《Science China Mathematics》 SCIE CSCD 2016年第5期861-874,共14页
Let(X, Y) be a balanced pair in an abelian category. We first introduce the notion of cotorsion pairs relative to(X, Y), and then give some equivalent characterizations when a relative cotorsion pair is hereditary or ... Let(X, Y) be a balanced pair in an abelian category. We first introduce the notion of cotorsion pairs relative to(X, Y), and then give some equivalent characterizations when a relative cotorsion pair is hereditary or perfect. We prove that if the X-resolution dimension of Y(resp. Y-coresolution dimension of X)is finite, then the bounded homotopy category of Y(resp. X) is contained in that of X(resp. Y). As a consequence, we get that the right X-singularity category coincides with the left Y-singularity category if the X-resolution dimension of Y and the Y-coresolution dimension of X are finite. 展开更多
关键词 balanced pairs relative cotorsion pairs relative derived categories relative singularity categories relative(co)resolution dimension
原文传递
The Auslander-type condition of triangular matrix rings
4
作者 HUANG ChongHui HUANG ZhaoYong 《Science China Mathematics》 SCIE 2012年第8期1647-1654,共8页
Let R be a left and right Noetherian ring and n, k be any non-negative integers. R is said to satisfy the Auslander-type condition Gn(k) if the right fiat dimension of the (i + 1)-th term in a minimal injective r... Let R be a left and right Noetherian ring and n, k be any non-negative integers. R is said to satisfy the Auslander-type condition Gn(k) if the right fiat dimension of the (i + 1)-th term in a minimal injective resolution of RR is at most i + k for any 0 ≤ i ≤ n - 1. In this paper, we prove that R is Gn(k) if and only if so is a lower triangular matrix ring of any degree t over R. 展开更多
关键词 Auslander-type condition triangular matrix rings fiat dimension minimal injective resolutions mlnlm^l A.t r^nlllti^n~
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部