We make a systematic study of two-parameter models of δ ′ s -sphere interaction and δ ′ s -sphere plus a Coulomb interaction. Where δ ′ s interaction denotes the δ ′ -sphere interaction of the second kind. We ...We make a systematic study of two-parameter models of δ ′ s -sphere interaction and δ ′ s -sphere plus a Coulomb interaction. Where δ ′ s interaction denotes the δ ′ -sphere interaction of the second kind. We provide the mathematical definitions of Hamiltonians and obtain new results for both models, in particular the resolvents equations, spectral properties and some scattering quantities.展开更多
The purpose is to introduce and study a class of more general multivalued quasi variational inclusions in Banach spaces. By using the resolvent operator technique some existence theorem of solutions and iterative appr...The purpose is to introduce and study a class of more general multivalued quasi variational inclusions in Banach spaces. By using the resolvent operator technique some existence theorem of solutions and iterative approximation for solving this kind of multivalued quasi variational inclusions are established. The results generalize, improve and unify a number of Noor's and others' recent results.展开更多
Concerned with the existence and convergence properties of approximate solution to multivalued nonlinear mixed variational inclusion problem in a Hilbert space, we established the equivalence between the variational i...Concerned with the existence and convergence properties of approximate solution to multivalued nonlinear mixed variational inclusion problem in a Hilbert space, we established the equivalence between the variational inclusion and the general resolvent equations, obtained three iterative algorithms, provided the convergence analysis of the algorithms. The results obtained improve and generalize a number of resent results.展开更多
In this paper, a perturbed iterative method for solving a general class of quasi variational inclusions was studied. The existence and convergence of solution were proved. Furthermore, a new iterative method for solv...In this paper, a perturbed iterative method for solving a general class of quasi variational inclusions was studied. The existence and convergence of solution were proved. Furthermore, a new iterative method for solving a general class of quasi variational inclusions was proposed. The continuity of the perturbed solution was also proved for a parametric variational inclusion problem. Several special cases were discussed.展开更多
文摘We make a systematic study of two-parameter models of δ ′ s -sphere interaction and δ ′ s -sphere plus a Coulomb interaction. Where δ ′ s interaction denotes the δ ′ -sphere interaction of the second kind. We provide the mathematical definitions of Hamiltonians and obtain new results for both models, in particular the resolvents equations, spectral properties and some scattering quantities.
文摘The purpose is to introduce and study a class of more general multivalued quasi variational inclusions in Banach spaces. By using the resolvent operator technique some existence theorem of solutions and iterative approximation for solving this kind of multivalued quasi variational inclusions are established. The results generalize, improve and unify a number of Noor's and others' recent results.
文摘Concerned with the existence and convergence properties of approximate solution to multivalued nonlinear mixed variational inclusion problem in a Hilbert space, we established the equivalence between the variational inclusion and the general resolvent equations, obtained three iterative algorithms, provided the convergence analysis of the algorithms. The results obtained improve and generalize a number of resent results.
文摘In this paper, a perturbed iterative method for solving a general class of quasi variational inclusions was studied. The existence and convergence of solution were proved. Furthermore, a new iterative method for solving a general class of quasi variational inclusions was proposed. The continuity of the perturbed solution was also proved for a parametric variational inclusion problem. Several special cases were discussed.