For dealing with the resonance fault of ultra-high voltage transformers(UHVTs)with the parallel thyristor controlled reactor(TCR)+the filter compensator(FC)type static var compensator(SVC)caused by dc magnetic biasing...For dealing with the resonance fault of ultra-high voltage transformers(UHVTs)with the parallel thyristor controlled reactor(TCR)+the filter compensator(FC)type static var compensator(SVC)caused by dc magnetic biasing,a simulation model of UHVT with parallel SVC for the frequency analysis of the impedance characteristics and a magnetic-field coupling model for UHVT based on classic Jiles-Atherton hysteresis theories are constructed based on the MATLAB/Simulink platform.Both the theoretical and simulation results prove that the resonance fault is caused by the resonance point on the low-voltage side of the transformer,which will approach the 4th harmonic point under magnetic biasing.Based on the fault analysis,a new resonance control method is proposed by adding reactance with by-pass switches in series with FC branches.Under dc magnetic biasing,the cutoff of the by-pass switch will increase the series reactance rate of the FC branches and change the resonance point.In order to avoid the 7th harmonic increasement caused by this method,the firing angle of the TCR branches is locked between 130°and 180°.The effect of the proposed method is validated by the simulation model of a 750 kV UHVT and the results show that the mechanism analysis of the resonance fault is correct and the resonance control method is valid.展开更多
Fast charging and high-power delivering batteries are highly demanded in mobile electronics,electric vehicles and grid energy storage,but there are full of challenges.The star-material Li_(3)V_(2)(PO_(4))_(3) is demon...Fast charging and high-power delivering batteries are highly demanded in mobile electronics,electric vehicles and grid energy storage,but there are full of challenges.The star-material Li_(3)V_(2)(PO_(4))_(3) is demonstrated as a promising high-rate cathode material meeting the above requirements.Herein,we report the carbon decorated Li_(3)V_(2)(PO_(4))_(3) (LVP/C) cathode prepared via a facile method,which displays a remarkable high-rate capability and long-term cycling performance.Briefly,the prepared LVP/C delivers a high discharge capacity of 122 mAh g^(-1)(-93% of the theoretical capacity) at a high rate up to 20 C and a superior capacity retention of 87.1% after 1000 cycles.Importantly,by applying a combination of X-ray absorption spectroscopy and full-range mapping of resonant inelastic X-ray scattering,we clearly elucidate the structural and chemical evolutions of LVP upon various potentials and cycle numbers.We show unambiguous spectroscopic evidences that the evolution of the hybridization strength between V and O in LVP/C as a consequence of lithiation/delithiation is highly reversible both in the bulk and on the surface during the discharge-charge processes even over extended cycles,which should be responsible for the remarkable electrochemical performance of LVP/C.Our present study provides not only an effective synthesis strategy but also deeper insights into the surface and bulk electrochemical reaction mechanism of LVP,which should be beneficial for the further design of high-performance LVP electrode materials.展开更多
A multimode-quartz-crystal oscillator was developed to excite stable dual-mode resonance at different frequencies: The oscillation of the 3rd harmonic resonance of the principle C-mode and an additional resonance B-mo...A multimode-quartz-crystal oscillator was developed to excite stable dual-mode resonance at different frequencies: The oscillation of the 3rd harmonic resonance of the principle C-mode and an additional resonance B-mode of SC-cut crystal. Harmonic combinations of the 3rd and fundamental mode of B-mode with the 3rd harmonics of C-mode are demonstrated. The measurement of the temperature dependence of the oscillation frequency is demonstrated along with the stability determined by root Allan variance. Dependence on the open conductance of the active circuit and the dependence on the coupling capacitors are discussed.展开更多
In this paper,an introduction to the bifurcation theory and its applicability to the study of sub-synchronous resonance (SSR) phenomenon in power system are presented. The continuation and bifurcation analysis softwar...In this paper,an introduction to the bifurcation theory and its applicability to the study of sub-synchronous resonance (SSR) phenomenon in power system are presented. The continuation and bifurcation analysis software AUTO97 is adopted to investigate SSR for a single-machine-infinite-bus power system with series capacitor compensation. The investigation results show that SSR is the result of unstable limit cycle after bifurcation. When the system exhibits SSR, some complex periodical orbit bifurcations, such as torus bifurcation and periodical fold bifurcation, may happen with the variation of limit cycle. Furthermore, the initial operation condition may greatly influence the ultimate state of the system. The time-domain simulation is carried out to verify the effectiveness of the results obtained from the bifurcation analysis.展开更多
Large time delay is one of the inherent features of a modular multilevel converter(MMC)-based high voltage direct current(HVDC)system and is the main factor leading to the unfavorable’negative resistance and inducta...Large time delay is one of the inherent features of a modular multilevel converter(MMC)-based high voltage direct current(HVDC)system and is the main factor leading to the unfavorable’negative resistance and inductance’characteristic of MMC impedance.Research indicates that this characteristic interacting with the capacitive characteristics of an AC system is the cause of high frequency resonance(HFR)in the Yu-E HVDC project.As the current controller is one of the main factors that affects the MMC impedance,a compensation control to imitate the paralleled impedance at the point of common coupling(PCC)is proposed.Therefore,the structure and parameter design of the compensation controller are core to realizing HFR suppression.There are two potentially risky frequency ranges of HFRs(around 700 Hz and 1.8 kHz)in the studied AC system within 2.0 kHz.The core concept of HFR suppression is to make the phase angle of MMC impedance smaller than 90◦in the two risky frequency ranges according to impedance stability theory.Hence,the design parameters aim to coordinate the phase angle of MMC impedance in the two risky frequency ranges.In this paper,three types of compensation controller are studied to suppress HFRs,namely,first-order low pass filter(LPF),second-order LPF,and third-order band pass filter.The results of parameter design show that the first-order LPF cannot suppress both HFRs simultaneously.The second-order LPF can suppress both HFRs,however,it introduces a DC component into the current control loop.Therefore,a high pass filter is added to form the recommended third-order controller.All parameter ranges of the compensation controller are derived using analytical expressions.Finally,the correctness of the parameter design is proofed using time-domain simulations.展开更多
In this paper, the authors present the transmission line (TL) realization of one-dimensional subwavelength resonator formed by a pair of conventional right-handed material (RHM) and left-handed material (LHM). In such...In this paper, the authors present the transmission line (TL) realization of one-dimensional subwavelength resonator formed by a pair of conventional right-handed material (RHM) and left-handed material (LHM). In such resonator, a novel reso- nant mode with the resonant frequency depending on the length ratio of the RH/LH TL sections occurs as a consequence of the full phase compensation due to the backward wave in the LH TL section. The theoretical circuit-model analyses are supported by simulation and experimental evidence on resonators with different RH/LH length ratios.展开更多
This paper investigates the effects of material and dimension parameters on the frequency splitting,frequency drift,and quality factor(Q)of aluminium nitride(AlN)-on-n-doped/pure silicon(Si)microelectromechanical syst...This paper investigates the effects of material and dimension parameters on the frequency splitting,frequency drift,and quality factor(Q)of aluminium nitride(AlN)-on-n-doped/pure silicon(Si)microelectromechanical systems(MEMS)disk resonators through analysis and simulation.These parameters include the crystallographic orientation,dopant,substrate thickness,and temperature.The resonators operate in the elliptical,higher order,and flexural modes.The simulation results show that i)the turnover points of the resonators exist at 55°C,-50°C,40°C,and-10°C for n-doped silicon with the doping concentration of 2×1019 cm-3 and the Si thickness of 3.5μm,and these points are shifted with the substrate thickness and mode variations;ii)compared with pure Si,the modal-frequency splitting for n-doped Si is higher and increases from 5%to 10%for all studied modes;iii)Q of the resonators depends on the temperature and dopant.Therefore,the turnover,modal-frequency splitting,and Q of the resonators depend on the thickness and material of the substrate and the temperature.This work offers an analysis and design platform for high-performance MEMS gyroscopes as well as oscillators in terms of the temperature compensation by n-doped Si.展开更多
为提高单相动态电压恢复器(dynamic voltage restorer,DVR)的补偿性能,提出一种基于等效基波及奇次谐波谐振器组的数字控制方法。采用可等效为一组谐振器的延时模块,能够有效抑制电网基波和谐波扰动。给出一种包含两个控制参数和一组...为提高单相动态电压恢复器(dynamic voltage restorer,DVR)的补偿性能,提出一种基于等效基波及奇次谐波谐振器组的数字控制方法。采用可等效为一组谐振器的延时模块,能够有效抑制电网基波和谐波扰动。给出一种包含两个控制参数和一组零相移陷波滤波器的结构及其设计方法,使系统在保证稳定性的同时,获得较大的谐振增益。其中,延时环节衰减系数可增加谐振器组鲁棒性;控制器比例增益可解决零相移陷波器中使用延时带来的问题;零相移陷波器组既能对消LC谐振峰,也能解决等效谐振器组高增益在高频处的稳定性问题。同时,引入电源电压和负载电流双前馈来保证响应速度,增加了对扰动的抑制能力。所提控制策略结构简单,谐波补偿能力强,动态响应快,易于实现。在2kW单相DVR实验装置上的实验结果验证了该控制方法的正确性。展开更多
为了实现直驱式永磁风力发电系统安全稳定并网,提出一种基于双补偿下垂与多重准比例谐振(multiple quasi proportional resonance,MQPR)相结合的并网控制策略。该策略源于传统下垂控制,在电压控制环节引入直流电压补偿量,能快速调节直...为了实现直驱式永磁风力发电系统安全稳定并网,提出一种基于双补偿下垂与多重准比例谐振(multiple quasi proportional resonance,MQPR)相结合的并网控制策略。该策略源于传统下垂控制,在电压控制环节引入直流电压补偿量,能快速调节直流母线电压达到稳定;在电流控制环节引入电容电流补偿量,能有效减小滤波电容造成的电流误差影响;同时,设计出MQPR控制器替代内环电流的PI控制器,可以滤除系统中多次谐波电流。通过建立仿真模型,与双闭环PI和传统下垂控制策略进行对比,验证所提控制策略的有效性。展开更多
Wireless power transfer(WPT)is gaining much attention for battery charging of electric vehicles(EVs).Resonant WPT systems play a crucial role in achieving efficient power transfer from source to load.An overview of tw...Wireless power transfer(WPT)is gaining much attention for battery charging of electric vehicles(EVs).Resonant WPT systems play a crucial role in achieving efficient power transfer from source to load.An overview of two-element resonant compensation techniques and their characteristics under various operating conditions are presented.Also the converter and control strategies used for different topologies are reviewed.The behavior of the performance factors are evaluated against the operating conditions and compared for the different topologies.展开更多
基金The Science Foundation of State Grid Xinjiang(No.SGTYHT/19-JS-215)。
文摘For dealing with the resonance fault of ultra-high voltage transformers(UHVTs)with the parallel thyristor controlled reactor(TCR)+the filter compensator(FC)type static var compensator(SVC)caused by dc magnetic biasing,a simulation model of UHVT with parallel SVC for the frequency analysis of the impedance characteristics and a magnetic-field coupling model for UHVT based on classic Jiles-Atherton hysteresis theories are constructed based on the MATLAB/Simulink platform.Both the theoretical and simulation results prove that the resonance fault is caused by the resonance point on the low-voltage side of the transformer,which will approach the 4th harmonic point under magnetic biasing.Based on the fault analysis,a new resonance control method is proposed by adding reactance with by-pass switches in series with FC branches.Under dc magnetic biasing,the cutoff of the by-pass switch will increase the series reactance rate of the FC branches and change the resonance point.In order to avoid the 7th harmonic increasement caused by this method,the firing angle of the TCR branches is locked between 130°and 180°.The effect of the proposed method is validated by the simulation model of a 750 kV UHVT and the results show that the mechanism analysis of the resonance fault is correct and the resonance control method is valid.
基金supported by Collaborative Innovation Center of Suzhou Nano Science & Technologythe Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)+5 种基金the 111 roject, Joint International Research Laboratory of Carbon-Based Functional Materials and Devicesthe National Natural Science Foundation of China (11905154)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (19KJA550004)the Natural Science Foundation of Jiangsu Province (BK20190814)the National Key R&D Program of China (No. 2016YFA0202600)supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231。
文摘Fast charging and high-power delivering batteries are highly demanded in mobile electronics,electric vehicles and grid energy storage,but there are full of challenges.The star-material Li_(3)V_(2)(PO_(4))_(3) is demonstrated as a promising high-rate cathode material meeting the above requirements.Herein,we report the carbon decorated Li_(3)V_(2)(PO_(4))_(3) (LVP/C) cathode prepared via a facile method,which displays a remarkable high-rate capability and long-term cycling performance.Briefly,the prepared LVP/C delivers a high discharge capacity of 122 mAh g^(-1)(-93% of the theoretical capacity) at a high rate up to 20 C and a superior capacity retention of 87.1% after 1000 cycles.Importantly,by applying a combination of X-ray absorption spectroscopy and full-range mapping of resonant inelastic X-ray scattering,we clearly elucidate the structural and chemical evolutions of LVP upon various potentials and cycle numbers.We show unambiguous spectroscopic evidences that the evolution of the hybridization strength between V and O in LVP/C as a consequence of lithiation/delithiation is highly reversible both in the bulk and on the surface during the discharge-charge processes even over extended cycles,which should be responsible for the remarkable electrochemical performance of LVP/C.Our present study provides not only an effective synthesis strategy but also deeper insights into the surface and bulk electrochemical reaction mechanism of LVP,which should be beneficial for the further design of high-performance LVP electrode materials.
文摘A multimode-quartz-crystal oscillator was developed to excite stable dual-mode resonance at different frequencies: The oscillation of the 3rd harmonic resonance of the principle C-mode and an additional resonance B-mode of SC-cut crystal. Harmonic combinations of the 3rd and fundamental mode of B-mode with the 3rd harmonics of C-mode are demonstrated. The measurement of the temperature dependence of the oscillation frequency is demonstrated along with the stability determined by root Allan variance. Dependence on the open conductance of the active circuit and the dependence on the coupling capacitors are discussed.
基金Supported by the National Basic Research Program of China ("973" Projects) (Grant Nos.1998020319 and 2004CB217906)
文摘In this paper,an introduction to the bifurcation theory and its applicability to the study of sub-synchronous resonance (SSR) phenomenon in power system are presented. The continuation and bifurcation analysis software AUTO97 is adopted to investigate SSR for a single-machine-infinite-bus power system with series capacitor compensation. The investigation results show that SSR is the result of unstable limit cycle after bifurcation. When the system exhibits SSR, some complex periodical orbit bifurcations, such as torus bifurcation and periodical fold bifurcation, may happen with the variation of limit cycle. Furthermore, the initial operation condition may greatly influence the ultimate state of the system. The time-domain simulation is carried out to verify the effectiveness of the results obtained from the bifurcation analysis.
基金supported by the National Natural Science Foundation of China(No.U1866210).
文摘Large time delay is one of the inherent features of a modular multilevel converter(MMC)-based high voltage direct current(HVDC)system and is the main factor leading to the unfavorable’negative resistance and inductance’characteristic of MMC impedance.Research indicates that this characteristic interacting with the capacitive characteristics of an AC system is the cause of high frequency resonance(HFR)in the Yu-E HVDC project.As the current controller is one of the main factors that affects the MMC impedance,a compensation control to imitate the paralleled impedance at the point of common coupling(PCC)is proposed.Therefore,the structure and parameter design of the compensation controller are core to realizing HFR suppression.There are two potentially risky frequency ranges of HFRs(around 700 Hz and 1.8 kHz)in the studied AC system within 2.0 kHz.The core concept of HFR suppression is to make the phase angle of MMC impedance smaller than 90◦in the two risky frequency ranges according to impedance stability theory.Hence,the design parameters aim to coordinate the phase angle of MMC impedance in the two risky frequency ranges.In this paper,three types of compensation controller are studied to suppress HFRs,namely,first-order low pass filter(LPF),second-order LPF,and third-order band pass filter.The results of parameter design show that the first-order LPF cannot suppress both HFRs simultaneously.The second-order LPF can suppress both HFRs,however,it introduces a DC component into the current control loop.Therefore,a high pass filter is added to form the recommended third-order controller.All parameter ranges of the compensation controller are derived using analytical expressions.Finally,the correctness of the parameter design is proofed using time-domain simulations.
基金Project supported by the National Basic Research Program (973) of China (No. 2004CB719800) and the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20030284024)
文摘In this paper, the authors present the transmission line (TL) realization of one-dimensional subwavelength resonator formed by a pair of conventional right-handed material (RHM) and left-handed material (LHM). In such resonator, a novel reso- nant mode with the resonant frequency depending on the length ratio of the RH/LH TL sections occurs as a consequence of the full phase compensation due to the backward wave in the LH TL section. The theoretical circuit-model analyses are supported by simulation and experimental evidence on resonators with different RH/LH length ratios.
文摘This paper investigates the effects of material and dimension parameters on the frequency splitting,frequency drift,and quality factor(Q)of aluminium nitride(AlN)-on-n-doped/pure silicon(Si)microelectromechanical systems(MEMS)disk resonators through analysis and simulation.These parameters include the crystallographic orientation,dopant,substrate thickness,and temperature.The resonators operate in the elliptical,higher order,and flexural modes.The simulation results show that i)the turnover points of the resonators exist at 55°C,-50°C,40°C,and-10°C for n-doped silicon with the doping concentration of 2×1019 cm-3 and the Si thickness of 3.5μm,and these points are shifted with the substrate thickness and mode variations;ii)compared with pure Si,the modal-frequency splitting for n-doped Si is higher and increases from 5%to 10%for all studied modes;iii)Q of the resonators depends on the temperature and dopant.Therefore,the turnover,modal-frequency splitting,and Q of the resonators depend on the thickness and material of the substrate and the temperature.This work offers an analysis and design platform for high-performance MEMS gyroscopes as well as oscillators in terms of the temperature compensation by n-doped Si.
文摘为提高单相动态电压恢复器(dynamic voltage restorer,DVR)的补偿性能,提出一种基于等效基波及奇次谐波谐振器组的数字控制方法。采用可等效为一组谐振器的延时模块,能够有效抑制电网基波和谐波扰动。给出一种包含两个控制参数和一组零相移陷波滤波器的结构及其设计方法,使系统在保证稳定性的同时,获得较大的谐振增益。其中,延时环节衰减系数可增加谐振器组鲁棒性;控制器比例增益可解决零相移陷波器中使用延时带来的问题;零相移陷波器组既能对消LC谐振峰,也能解决等效谐振器组高增益在高频处的稳定性问题。同时,引入电源电压和负载电流双前馈来保证响应速度,增加了对扰动的抑制能力。所提控制策略结构简单,谐波补偿能力强,动态响应快,易于实现。在2kW单相DVR实验装置上的实验结果验证了该控制方法的正确性。
文摘为了实现直驱式永磁风力发电系统安全稳定并网,提出一种基于双补偿下垂与多重准比例谐振(multiple quasi proportional resonance,MQPR)相结合的并网控制策略。该策略源于传统下垂控制,在电压控制环节引入直流电压补偿量,能快速调节直流母线电压达到稳定;在电流控制环节引入电容电流补偿量,能有效减小滤波电容造成的电流误差影响;同时,设计出MQPR控制器替代内环电流的PI控制器,可以滤除系统中多次谐波电流。通过建立仿真模型,与双闭环PI和传统下垂控制策略进行对比,验证所提控制策略的有效性。
文摘Wireless power transfer(WPT)is gaining much attention for battery charging of electric vehicles(EVs).Resonant WPT systems play a crucial role in achieving efficient power transfer from source to load.An overview of two-element resonant compensation techniques and their characteristics under various operating conditions are presented.Also the converter and control strategies used for different topologies are reviewed.The behavior of the performance factors are evaluated against the operating conditions and compared for the different topologies.