With the continuous development of power supplies toward miniaturization,light weights,and high levels of integration,research on high-frequency resonant conversion based on planar magnetics is becoming extensive.Comb...With the continuous development of power supplies toward miniaturization,light weights,and high levels of integration,research on high-frequency resonant conversion based on planar magnetics is becoming extensive.Combining the soft-switching characteristics of resonant converters with those of wide bandgap devices,the switching frequency can be increase to the MHz range,and the power density of the entire system can be improved considerably.However,higher switching frequencies impose new requirements for the structural design,loss distribution,and common mode(CM)noise suppression of passive magnetic components.Herein,a thorough survey of the-state-of-the-art of planar magnetics in high-frequency resonant converters is conducted.Printed circuit board winding-based planar magnetics,magnetic integration,and power-loss optimization strategies are summarized in detail.Suppression methods for CM noise in high-frequency planar magnetics are also clarified and discussed.An insight view into the future development of planar magnetics for high-frequency resonant converters is presented.展开更多
Modular multilevel resonant converter is an promising candidate for high voltage applications since it has advantageous features,such as high efficiency,high voltage capability and easy fault-tolerant operation.Howeve...Modular multilevel resonant converter is an promising candidate for high voltage applications since it has advantageous features,such as high efficiency,high voltage capability and easy fault-tolerant operation.However,the inequality of arm inductance in practice will lead to imbalance between the upper and lower arm voltages,which will induce large ripples in the circulating current and a dc bias on the voltage generated by modular circuits.To compensate for the voltage imbalance,effects of arm duty cycle changes on arm voltages are discussed.An arm voltage balancing control method is proposed:adjust arm duty cycle according to arm voltage deviation in every switching cycle.Simulation and experimental results are presented to validate the theoretical analysis and the proposed control method.展开更多
In this paper, the modified LCC type of series-parallel Resonant Converter (RC) was designed and state-space modeling analysis was implemented. In this proposed converter, one leg of full bridge diode rectifier is rep...In this paper, the modified LCC type of series-parallel Resonant Converter (RC) was designed and state-space modeling analysis was implemented. In this proposed converter, one leg of full bridge diode rectifier is replaced with Synchronous Rectifier (SR) switches. The proposed LCC converter is controlled using frequency modulation in the nominal state. During hold-up time, the SRswitches control is changed from in-phase to phase-shifted gate signal to obtain high DC voltage conversion ratio. Furthermore, the closed loop PI and fuzzy provide control on the output side without decreasing the switching frequency. The parameter such as conduction loss on primary and secondary side, switching loss, core and copper also reduced. Simultaneously, the efficiency is increased about 94.79 is realized by this scheme. The proposed converter with an input of 40 V is built to produce an output of 235 V with the help of ZVS boost converter [1] even under line and load disturbances. As a comparison, the closed loop fuzzy controller performance is feasible and less sensitive than PI controller.展开更多
Over the last few years, smart grids have become a topic of intensive research, development and deployment across the world. This is due to the fact that, through the smart grid, stable and reliable power systems can ...Over the last few years, smart grids have become a topic of intensive research, development and deployment across the world. This is due to the fact that, through the smart grid, stable and reliable power systems can be achieved. This paper presents a fuzzy logic control for dual active bridge series resonant converters for DC smart grid application. The DC smart grid consists of wind turbine and photovoltaic generators, controllable and DC loads, and power converters. The proposed control method has been applied to the controllable load's and the grid side's dual active bridge series resonant converters for attaining control of the power system. It has been used for management of controllable load's state of charge, DC feeder's voltage stability during the loads and power variations from wind energy and photovoltaic generation and power flow management between the grid side and the DC smart grid. The effectiveness of the proposed DC smart grid operation has been verified by simulation results obtained by using MATLAB and PLECS cards.展开更多
The interests on energy storage schemes, bidirectional dc-dc converter and uninterruptible power supplies have been increasing nowadays as there wide researches are undertaken in the area of electric vehicles. A modif...The interests on energy storage schemes, bidirectional dc-dc converter and uninterruptible power supplies have been increasing nowadays as there wide researches are undertaken in the area of electric vehicles. A modified bi directional class-E resonant dc-dc converter is introduced here in this proposed topology for the application in electric vehicles. The advantages of soft switching techniques have been utilized for making analysis simple. The main advantage here in this system is that it can operate in a wide range of frequencies with minimal switching loss in transistors. This paper elaborates a detailed analysis on converter design and the same has been simulated and verified in Matlab/Simulink.展开更多
The Power Factor Correction(PFC)in Switched Reluctance(SR)motor is discussed in this article.The SR motors are applicable for multiple applications like electric vehicles,wind mills,machineries etc.The doubly salient ...The Power Factor Correction(PFC)in Switched Reluctance(SR)motor is discussed in this article.The SR motors are applicable for multiple applications like electric vehicles,wind mills,machineries etc.The doubly salient structure of SR motor causes the occurrence of torque ripples,which affects the power factor of the motor.To improve the power quality,the power factor has to be corrected and the ripples have to be minimized.In order to achieve these objectives,a novel power factor correction(PFC)method is proposed in this work.Here,the conventional Diode Bridge Rectifier(DBR)is replaced by a Bridgeless Hybrid Resonant(HR)converter,which assists in improvising the output in a wider range.The converter is chosen because of having variety of beneficial measures including high gain.The converter’s output is fed to the SR motor by means of an asymmetric Bridge Resonant(BR)converter.The proposed converter operates in continuous mode of conduction with the switching frequency of 10 KHz.A hysteresis current controller and Proportional Integral(PI)controller are utilized for reducing the harmonics in the source current along with the regulation of output voltage.In addition,the speed control of SR motor is accomplished by means of the Whale Optimization Algorithm(WOA)assisted PI controller.The proposed methodology is effective for the control of unity power factor,torque and current ripples.The Total Harmonic Distortion(THD)of the source current is also minimized,which suits the standard of International Electrotechnical Comission IEC 61000-3-2.By this methodology,the power factor of 0.99 is achieved with 97%efficiency and 3.92%THD.The proposed methodology is validated in simulation by MATLAB and in hardware by FPGA Spartan 6E.展开更多
DC–DC converters have achieved great popularity in recent decades due to their immense penetration in various applications.With this motivation,the authors have conducted a thorough review of recent advancements in v...DC–DC converters have achieved great popularity in recent decades due to their immense penetration in various applications.With this motivation,the authors have conducted a thorough review of recent advancements in various topologies of DC–DC converters.The need for DC power has raised further for certain applications like grid integration of distributed generation(DG),solar photovoltaic(PV),wind power generation(WPG),fuel cells(FC),etc.The investigation of converter topology is performed to achieve the desired objective of a specific application.Like in a PV system,to obtain the inherent capability of a DC–DC converter for operating at the maximum power point(MPP)and thereby electronically extracting the maximum power from the source.Hence,a detailed review of topological advancements on the low to medium-voltage and medium-to-high-power DC–DC converters has been carried out.Moreover,a thorough investigation has been carried out on profuse closed-loop strategies and compared with each other for obtaining the optimum or maximum output performance and thereby obtaining the utmost source utilization.The modern control techniques though have relatively more calculation time but,they tend to reduce the steady-state error that leads to the stabilization of the converter.Lastly,certain applications of the DC–DC converters have been explained to get an overall idea of the usefulness of such power converters.展开更多
Phase shifted converter realizes zero voltage switching (ZVS) with the use of leakage inductance of the main transformer, however, the realization of ZVS for lagging bridge leg is difficult. This paper proposes a c...Phase shifted converter realizes zero voltage switching (ZVS) with the use of leakage inductance of the main transformer, however, the realization of ZVS for lagging bridge leg is difficult. This paper proposes a current enhanced principle, and based on the principle, a novel phase shifted converter is proposed, which adds an auxi liary resonant net to the conventional full bridge converter to help the lagging bridge leg to realize ZVS. The principle and the design of the novel converter are analyzed, and the simulational and experimental results verify the principle.展开更多
With the development of high frequency resonant DC-DC power converters,the system efficiency,power density and dynamic characteristics have been significantly improved.High frequency resonant DC-DC converters have bee...With the development of high frequency resonant DC-DC power converters,the system efficiency,power density and dynamic characteristics have been significantly improved.High frequency resonant DC-DC converters have been applied in DC grid,renewable energy,transportation,aerospace,point-of-load(POL)power supply and many other fields.Under high switching frequencies,switching loss and magnetic loss are the main concerns;thus,the resonant topology and planar magnetic are two key technologies to reduce loss.This review compares different resonant topologies and analyzes the advantages and disadvantages respectively,such as LLC circuit,dual active bridge(DAB)circuit,and other high order resonant circuits.For planar magnetic components,optimal winding structures,modeling methods and integration methods are thoroughly surveyed.With corresponding topics,the opportunities and challenges in the future development are summarized,which mainly focus on the characteristics of wide bandgap devices,such as the dynamic resistance,output capacitance loss and also the integrated module.This review can be a helpful guidance when designing high frequency resonant DC-DC converters.展开更多
The presence of renewable energy resources in LV distribution networks may lead to a distribution transformer,also known as a Smart Transformer(ST),experiencing the bidirectional power flow.Therefore,the ST must have ...The presence of renewable energy resources in LV distribution networks may lead to a distribution transformer,also known as a Smart Transformer(ST),experiencing the bidirectional power flow.Therefore,the ST must have the capability to operate in both directions.However,the reverse power is less as compared to the forward power,thus the design of ST with the same capacity in both directions increases the hardware cost and decreases the system efficiency.This paper proposes a Hybrid-modular-ST(H-ST),composed of a mixed use of single active bridge-based series resonant converter and dual active bridge instead of complete use of uni-or bi-directional converter adopted in the conventional solid-state-transformer.Based on the proposed H-ST,the impacts of power imbalance among cascaded modules in reverse operation mode are analyzed and then an effective solution based on reactive power compensation combined with the characteristics of the proposed architecture is adopted.The simulation and experimental results clearly validate the effectiveness and feasibility of the theoretical analyses.展开更多
Owing to the advantages of high efficiency,high energy density,electrical isolation,low electromagnetic interference(EMI)and harmonic pollution,magnetic integration,wide output ranges,low voltage stress,and high opera...Owing to the advantages of high efficiency,high energy density,electrical isolation,low electromagnetic interference(EMI)and harmonic pollution,magnetic integration,wide output ranges,low voltage stress,and high operation frequency,the LLC resonant converters are widely used in various sectors of the electronics-based industries.The history and development of the LLC resonant converters are presented,their advantages are analyzed,three of the most popular LLC resonant converter topologies with detailed assessments of their strengths and drawbacks are elaborated.Furthermore,an important piece of research on the industrial applications of the LLC resonant converters is conducted,mainly including electric vehicle(EV)charging,photovoltaic systems,and light emitting diode(LED)lighting drivers and liquid crystal display(LCD)TV power supplies.Finally,the future evolution of the LLC resonant converter technology is discussed.展开更多
This paper proposes a design and control approach to parallel resonant converter(PRC) based battery chargers.The proposed approach is particularly suitable for the constant-current constant-voltage(CC-CV)charging meth...This paper proposes a design and control approach to parallel resonant converter(PRC) based battery chargers.The proposed approach is particularly suitable for the constant-current constant-voltage(CC-CV)charging method, which is the most commonly utilized one.Since the PRC is operated at two different frequencies for each CC and CV charging modes, this approach eliminates the need for complicated control techniques such as the frequency-control and phase-shift-control.The proposed method not only simplifies the design and implementation processes of the converter unit but also simplifies the design of output filter configuration and decreases the number of the required components for the control of the charger.The proposed method is confirmed by two experimental setups.The results show that the designed charger circuit ensured a very stable constant current in CC charging phase, where the charging current is fixed to 1.75 A.Although a voltage increase in CV phase is observed, the charger circuit is able to decrease the charging current to 0.5 A in CV phase, as depicted in battery data-sheet.The efficiency of the charger is figured out to be in the range of 86%-93% in the first setup, while it is found to be in the range of 78%-88% in the second setup,where a high frequency transformer is employed.展开更多
Resonant converter(RC)was brought under research in the 80’s widely,which can attain very small switching loss,therefore,facilitating resonant topologies to function at the high switching frequency.It is well address...Resonant converter(RC)was brought under research in the 80’s widely,which can attain very small switching loss,therefore,facilitating resonant topologies to function at the high switching frequency.It is well addressed in the review that the optimal parameterization of the resonant converter is a crucial task.While the literature has come out with different methodologies,they are highly conceptual and so the uncertainty due to high theoretical impact persists.This paper intends to develop a Parameter Optimization(PO)algorithm for designing and developing of LLC-RC.The proposed algorithm overwhelms the limitation by introducing a nonconceptual model based on the simulated outcome.Specifically,the resonant current under start-up conditions is acquired from the literary outcome,and the intelligent model is constructed.Based on the proposed model,a renowned search algorithm called as Whale Optimization Algorithm(WOA)is exploited to optimize the time constant of the resonant converter,which is a critical design parameter.The objective model is derived as a function of start-up time and so the start-up time can be minimized.Moreover,the response speed of the output voltage is also increased.The proposed Whale Optimization Algorithm based Parameter Optimization(WOAPO)is compared with the conventional techniques such as IAPO,Ant Bee Colony-PO(ABC-PO),Particle Swarm Optimization-PO(PSOPO),FireFly PO(FFPO)and Grey Wolf Optimization(GWOPO).The obtained result verifies the performance of the proposed method in modeling LLC-RC system.展开更多
A new type of traction drive system consisting of solid-state traction transformer (SSTT), inverter unit, auxiliary inverter, traction motor and other key components is built in order to suit the demand of developin...A new type of traction drive system consisting of solid-state traction transformer (SSTT), inverter unit, auxiliary inverter, traction motor and other key components is built in order to suit the demand of developing the next-generation electric traction system which will be efficient and lightweight, with high power density. For the purpose of reducing system volume and weight and improving efficiency and grid-side power quality, an efficient SSTT optimized topology combining highvoltage cascaded rectifiers with high-power high-frequency LLC resonant converter is proposed. On this basis, an integrated control strategy built upon synchronous rotating reference frame is presented to achieve unified control over fundamental active, reactive and harmonic components. The cartier-interleaving phase shift modulation strategy is proposed to improve the harmonic performance of cascaded rectifiers. In view of the secondary pulsating existing in a single-phase system, the mathematical model of secondary power transfer is built, and the mechanism of pulsating voltage resulting in beat frequency of LLC resonant converter is revealed, so as to design optimum matching of system parameters. Simulation and experimental results have verified that the traction system and control scheme mentioned in this paper are reasonable and superior and that they meet the future application requirements for rail transit.展开更多
基金Supported by the National Natural Science Foundation of China(52122708,51977105)Natural Science Foundation of Jiangsu Province,China(BK20200017).
文摘With the continuous development of power supplies toward miniaturization,light weights,and high levels of integration,research on high-frequency resonant conversion based on planar magnetics is becoming extensive.Combining the soft-switching characteristics of resonant converters with those of wide bandgap devices,the switching frequency can be increase to the MHz range,and the power density of the entire system can be improved considerably.However,higher switching frequencies impose new requirements for the structural design,loss distribution,and common mode(CM)noise suppression of passive magnetic components.Herein,a thorough survey of the-state-of-the-art of planar magnetics in high-frequency resonant converters is conducted.Printed circuit board winding-based planar magnetics,magnetic integration,and power-loss optimization strategies are summarized in detail.Suppression methods for CM noise in high-frequency planar magnetics are also clarified and discussed.An insight view into the future development of planar magnetics for high-frequency resonant converters is presented.
基金the National Key Research and Development Program of China(No.2016YFB0100603)National Natural Science Foundation of China(No.51877193)。
文摘Modular multilevel resonant converter is an promising candidate for high voltage applications since it has advantageous features,such as high efficiency,high voltage capability and easy fault-tolerant operation.However,the inequality of arm inductance in practice will lead to imbalance between the upper and lower arm voltages,which will induce large ripples in the circulating current and a dc bias on the voltage generated by modular circuits.To compensate for the voltage imbalance,effects of arm duty cycle changes on arm voltages are discussed.An arm voltage balancing control method is proposed:adjust arm duty cycle according to arm voltage deviation in every switching cycle.Simulation and experimental results are presented to validate the theoretical analysis and the proposed control method.
文摘In this paper, the modified LCC type of series-parallel Resonant Converter (RC) was designed and state-space modeling analysis was implemented. In this proposed converter, one leg of full bridge diode rectifier is replaced with Synchronous Rectifier (SR) switches. The proposed LCC converter is controlled using frequency modulation in the nominal state. During hold-up time, the SRswitches control is changed from in-phase to phase-shifted gate signal to obtain high DC voltage conversion ratio. Furthermore, the closed loop PI and fuzzy provide control on the output side without decreasing the switching frequency. The parameter such as conduction loss on primary and secondary side, switching loss, core and copper also reduced. Simultaneously, the efficiency is increased about 94.79 is realized by this scheme. The proposed converter with an input of 40 V is built to produce an output of 235 V with the help of ZVS boost converter [1] even under line and load disturbances. As a comparison, the closed loop fuzzy controller performance is feasible and less sensitive than PI controller.
文摘Over the last few years, smart grids have become a topic of intensive research, development and deployment across the world. This is due to the fact that, through the smart grid, stable and reliable power systems can be achieved. This paper presents a fuzzy logic control for dual active bridge series resonant converters for DC smart grid application. The DC smart grid consists of wind turbine and photovoltaic generators, controllable and DC loads, and power converters. The proposed control method has been applied to the controllable load's and the grid side's dual active bridge series resonant converters for attaining control of the power system. It has been used for management of controllable load's state of charge, DC feeder's voltage stability during the loads and power variations from wind energy and photovoltaic generation and power flow management between the grid side and the DC smart grid. The effectiveness of the proposed DC smart grid operation has been verified by simulation results obtained by using MATLAB and PLECS cards.
文摘The interests on energy storage schemes, bidirectional dc-dc converter and uninterruptible power supplies have been increasing nowadays as there wide researches are undertaken in the area of electric vehicles. A modified bi directional class-E resonant dc-dc converter is introduced here in this proposed topology for the application in electric vehicles. The advantages of soft switching techniques have been utilized for making analysis simple. The main advantage here in this system is that it can operate in a wide range of frequencies with minimal switching loss in transistors. This paper elaborates a detailed analysis on converter design and the same has been simulated and verified in Matlab/Simulink.
文摘The Power Factor Correction(PFC)in Switched Reluctance(SR)motor is discussed in this article.The SR motors are applicable for multiple applications like electric vehicles,wind mills,machineries etc.The doubly salient structure of SR motor causes the occurrence of torque ripples,which affects the power factor of the motor.To improve the power quality,the power factor has to be corrected and the ripples have to be minimized.In order to achieve these objectives,a novel power factor correction(PFC)method is proposed in this work.Here,the conventional Diode Bridge Rectifier(DBR)is replaced by a Bridgeless Hybrid Resonant(HR)converter,which assists in improvising the output in a wider range.The converter is chosen because of having variety of beneficial measures including high gain.The converter’s output is fed to the SR motor by means of an asymmetric Bridge Resonant(BR)converter.The proposed converter operates in continuous mode of conduction with the switching frequency of 10 KHz.A hysteresis current controller and Proportional Integral(PI)controller are utilized for reducing the harmonics in the source current along with the regulation of output voltage.In addition,the speed control of SR motor is accomplished by means of the Whale Optimization Algorithm(WOA)assisted PI controller.The proposed methodology is effective for the control of unity power factor,torque and current ripples.The Total Harmonic Distortion(THD)of the source current is also minimized,which suits the standard of International Electrotechnical Comission IEC 61000-3-2.By this methodology,the power factor of 0.99 is achieved with 97%efficiency and 3.92%THD.The proposed methodology is validated in simulation by MATLAB and in hardware by FPGA Spartan 6E.
文摘DC–DC converters have achieved great popularity in recent decades due to their immense penetration in various applications.With this motivation,the authors have conducted a thorough review of recent advancements in various topologies of DC–DC converters.The need for DC power has raised further for certain applications like grid integration of distributed generation(DG),solar photovoltaic(PV),wind power generation(WPG),fuel cells(FC),etc.The investigation of converter topology is performed to achieve the desired objective of a specific application.Like in a PV system,to obtain the inherent capability of a DC–DC converter for operating at the maximum power point(MPP)and thereby electronically extracting the maximum power from the source.Hence,a detailed review of topological advancements on the low to medium-voltage and medium-to-high-power DC–DC converters has been carried out.Moreover,a thorough investigation has been carried out on profuse closed-loop strategies and compared with each other for obtaining the optimum or maximum output performance and thereby obtaining the utmost source utilization.The modern control techniques though have relatively more calculation time but,they tend to reduce the steady-state error that leads to the stabilization of the converter.Lastly,certain applications of the DC–DC converters have been explained to get an overall idea of the usefulness of such power converters.
文摘Phase shifted converter realizes zero voltage switching (ZVS) with the use of leakage inductance of the main transformer, however, the realization of ZVS for lagging bridge leg is difficult. This paper proposes a current enhanced principle, and based on the principle, a novel phase shifted converter is proposed, which adds an auxi liary resonant net to the conventional full bridge converter to help the lagging bridge leg to realize ZVS. The principle and the design of the novel converter are analyzed, and the simulational and experimental results verify the principle.
基金supported by the Research Start-Up Funding of HIT Young Talent Project。
文摘With the development of high frequency resonant DC-DC power converters,the system efficiency,power density and dynamic characteristics have been significantly improved.High frequency resonant DC-DC converters have been applied in DC grid,renewable energy,transportation,aerospace,point-of-load(POL)power supply and many other fields.Under high switching frequencies,switching loss and magnetic loss are the main concerns;thus,the resonant topology and planar magnetic are two key technologies to reduce loss.This review compares different resonant topologies and analyzes the advantages and disadvantages respectively,such as LLC circuit,dual active bridge(DAB)circuit,and other high order resonant circuits.For planar magnetic components,optimal winding structures,modeling methods and integration methods are thoroughly surveyed.With corresponding topics,the opportunities and challenges in the future development are summarized,which mainly focus on the characteristics of wide bandgap devices,such as the dynamic resistance,output capacitance loss and also the integrated module.This review can be a helpful guidance when designing high frequency resonant DC-DC converters.
基金supported in part by National Key Research&Development Project of China(2017YFE0134300)in part by Shanghai 2022 Science and Technology Innovation Action Plan-Star Cultivation(Sailing Program)(22YF1415700)in part by the National Natural Science Foundation of China under Grant 52307215.
文摘The presence of renewable energy resources in LV distribution networks may lead to a distribution transformer,also known as a Smart Transformer(ST),experiencing the bidirectional power flow.Therefore,the ST must have the capability to operate in both directions.However,the reverse power is less as compared to the forward power,thus the design of ST with the same capacity in both directions increases the hardware cost and decreases the system efficiency.This paper proposes a Hybrid-modular-ST(H-ST),composed of a mixed use of single active bridge-based series resonant converter and dual active bridge instead of complete use of uni-or bi-directional converter adopted in the conventional solid-state-transformer.Based on the proposed H-ST,the impacts of power imbalance among cascaded modules in reverse operation mode are analyzed and then an effective solution based on reactive power compensation combined with the characteristics of the proposed architecture is adopted.The simulation and experimental results clearly validate the effectiveness and feasibility of the theoretical analyses.
基金Supported by the National Natural Science Foundation of China(51907032)the Natural Science Foundation of Guangdong Province(2018A030313365).
文摘Owing to the advantages of high efficiency,high energy density,electrical isolation,low electromagnetic interference(EMI)and harmonic pollution,magnetic integration,wide output ranges,low voltage stress,and high operation frequency,the LLC resonant converters are widely used in various sectors of the electronics-based industries.The history and development of the LLC resonant converters are presented,their advantages are analyzed,three of the most popular LLC resonant converter topologies with detailed assessments of their strengths and drawbacks are elaborated.Furthermore,an important piece of research on the industrial applications of the LLC resonant converters is conducted,mainly including electric vehicle(EV)charging,photovoltaic systems,and light emitting diode(LED)lighting drivers and liquid crystal display(LCD)TV power supplies.Finally,the future evolution of the LLC resonant converter technology is discussed.
文摘This paper proposes a design and control approach to parallel resonant converter(PRC) based battery chargers.The proposed approach is particularly suitable for the constant-current constant-voltage(CC-CV)charging method, which is the most commonly utilized one.Since the PRC is operated at two different frequencies for each CC and CV charging modes, this approach eliminates the need for complicated control techniques such as the frequency-control and phase-shift-control.The proposed method not only simplifies the design and implementation processes of the converter unit but also simplifies the design of output filter configuration and decreases the number of the required components for the control of the charger.The proposed method is confirmed by two experimental setups.The results show that the designed charger circuit ensured a very stable constant current in CC charging phase, where the charging current is fixed to 1.75 A.Although a voltage increase in CV phase is observed, the charger circuit is able to decrease the charging current to 0.5 A in CV phase, as depicted in battery data-sheet.The efficiency of the charger is figured out to be in the range of 86%-93% in the first setup, while it is found to be in the range of 78%-88% in the second setup,where a high frequency transformer is employed.
文摘Resonant converter(RC)was brought under research in the 80’s widely,which can attain very small switching loss,therefore,facilitating resonant topologies to function at the high switching frequency.It is well addressed in the review that the optimal parameterization of the resonant converter is a crucial task.While the literature has come out with different methodologies,they are highly conceptual and so the uncertainty due to high theoretical impact persists.This paper intends to develop a Parameter Optimization(PO)algorithm for designing and developing of LLC-RC.The proposed algorithm overwhelms the limitation by introducing a nonconceptual model based on the simulated outcome.Specifically,the resonant current under start-up conditions is acquired from the literary outcome,and the intelligent model is constructed.Based on the proposed model,a renowned search algorithm called as Whale Optimization Algorithm(WOA)is exploited to optimize the time constant of the resonant converter,which is a critical design parameter.The objective model is derived as a function of start-up time and so the start-up time can be minimized.Moreover,the response speed of the output voltage is also increased.The proposed Whale Optimization Algorithm based Parameter Optimization(WOAPO)is compared with the conventional techniques such as IAPO,Ant Bee Colony-PO(ABC-PO),Particle Swarm Optimization-PO(PSOPO),FireFly PO(FFPO)and Grey Wolf Optimization(GWOPO).The obtained result verifies the performance of the proposed method in modeling LLC-RC system.
文摘A new type of traction drive system consisting of solid-state traction transformer (SSTT), inverter unit, auxiliary inverter, traction motor and other key components is built in order to suit the demand of developing the next-generation electric traction system which will be efficient and lightweight, with high power density. For the purpose of reducing system volume and weight and improving efficiency and grid-side power quality, an efficient SSTT optimized topology combining highvoltage cascaded rectifiers with high-power high-frequency LLC resonant converter is proposed. On this basis, an integrated control strategy built upon synchronous rotating reference frame is presented to achieve unified control over fundamental active, reactive and harmonic components. The cartier-interleaving phase shift modulation strategy is proposed to improve the harmonic performance of cascaded rectifiers. In view of the secondary pulsating existing in a single-phase system, the mathematical model of secondary power transfer is built, and the mechanism of pulsating voltage resulting in beat frequency of LLC resonant converter is revealed, so as to design optimum matching of system parameters. Simulation and experimental results have verified that the traction system and control scheme mentioned in this paper are reasonable and superior and that they meet the future application requirements for rail transit.