Effective features are essential for fault diagnosis.Due to the faint characteristics of a single line-to-ground(SLG)fault,fault line detection has become a challenge in resonant grounding distribution systems.This pa...Effective features are essential for fault diagnosis.Due to the faint characteristics of a single line-to-ground(SLG)fault,fault line detection has become a challenge in resonant grounding distribution systems.This paper proposes a novel fault line detection method using waveform fusion and one-dimensional convolutional neural networks(1-D CNN).After an SLG fault occurs,the first-half waves of zero-sequence currents are collected and superimposed with each other to achieve waveform fusion.The compelling feature of fused waveforms is extracted by 1-D CNN to determine whether the fused waveform source contains the fault line.Then,the 1-D CNN output is used to update the value of the counter in order to identify the fault line.Given the lack of fault data in existing distribution systems,the proposed method only needs a small quantity of data for model training and fault line detection.In addition,the proposed method owns fault-tolerant performance.Even if a few samples are misjudged,the fault line can still be detected correctly based on the full output results of 1-D CNN.Experimental results verified that the proposed method can work effectively under various fault conditions.展开更多
In resonant grounding systems,most single-phaseto-ground faults evolve from IAFs(Intermittent Arc Faults).Earlier detection of IAFs can facilitate fault avoidance.This work proposes a novel method based on machine lea...In resonant grounding systems,most single-phaseto-ground faults evolve from IAFs(Intermittent Arc Faults).Earlier detection of IAFs can facilitate fault avoidance.This work proposes a novel method based on machine learning for detecting IAFs in three steps.First,the feature of zero-sequence current is automatically extracted and selected by a newlydesigned FINET(“For IAFs,Neuron Elaboration Net”),instead of traditional feature selection based on time-frequency decomposition.Moreover,data of the zero-sequence current divided by different time windows are successively input into the trained FINET.A proposed PSF(principal-subordinate factor)analyses the results obtained from FINET to improve anti-interference in the mentioned IAF detection algorithm.Experiments using PSCAD/EMTDC software simulation data show the proposed method is feasible and highly adaptable.In addition,the detection result of on-site recorded data demonstrates the effectiveness of the proposed method in practical resonant grounding systems.展开更多
基金supported by the National Natural Science Foundation of China through the Project of Research of Flexible and Adaptive Arc-Suppression Method for Single-Phase Grounding Fault in Distribution Networks(No.51677030).
文摘Effective features are essential for fault diagnosis.Due to the faint characteristics of a single line-to-ground(SLG)fault,fault line detection has become a challenge in resonant grounding distribution systems.This paper proposes a novel fault line detection method using waveform fusion and one-dimensional convolutional neural networks(1-D CNN).After an SLG fault occurs,the first-half waves of zero-sequence currents are collected and superimposed with each other to achieve waveform fusion.The compelling feature of fused waveforms is extracted by 1-D CNN to determine whether the fused waveform source contains the fault line.Then,the 1-D CNN output is used to update the value of the counter in order to identify the fault line.Given the lack of fault data in existing distribution systems,the proposed method only needs a small quantity of data for model training and fault line detection.In addition,the proposed method owns fault-tolerant performance.Even if a few samples are misjudged,the fault line can still be detected correctly based on the full output results of 1-D CNN.Experimental results verified that the proposed method can work effectively under various fault conditions.
基金sponsored by the National Natural Science Foundation of China (No.51677030).
文摘In resonant grounding systems,most single-phaseto-ground faults evolve from IAFs(Intermittent Arc Faults).Earlier detection of IAFs can facilitate fault avoidance.This work proposes a novel method based on machine learning for detecting IAFs in three steps.First,the feature of zero-sequence current is automatically extracted and selected by a newlydesigned FINET(“For IAFs,Neuron Elaboration Net”),instead of traditional feature selection based on time-frequency decomposition.Moreover,data of the zero-sequence current divided by different time windows are successively input into the trained FINET.A proposed PSF(principal-subordinate factor)analyses the results obtained from FINET to improve anti-interference in the mentioned IAF detection algorithm.Experiments using PSCAD/EMTDC software simulation data show the proposed method is feasible and highly adaptable.In addition,the detection result of on-site recorded data demonstrates the effectiveness of the proposed method in practical resonant grounding systems.