With the development of high frequency resonant DC-DC power converters,the system efficiency,power density and dynamic characteristics have been significantly improved.High frequency resonant DC-DC converters have bee...With the development of high frequency resonant DC-DC power converters,the system efficiency,power density and dynamic characteristics have been significantly improved.High frequency resonant DC-DC converters have been applied in DC grid,renewable energy,transportation,aerospace,point-of-load(POL)power supply and many other fields.Under high switching frequencies,switching loss and magnetic loss are the main concerns;thus,the resonant topology and planar magnetic are two key technologies to reduce loss.This review compares different resonant topologies and analyzes the advantages and disadvantages respectively,such as LLC circuit,dual active bridge(DAB)circuit,and other high order resonant circuits.For planar magnetic components,optimal winding structures,modeling methods and integration methods are thoroughly surveyed.With corresponding topics,the opportunities and challenges in the future development are summarized,which mainly focus on the characteristics of wide bandgap devices,such as the dynamic resistance,output capacitance loss and also the integrated module.This review can be a helpful guidance when designing high frequency resonant DC-DC converters.展开更多
基金supported by the Research Start-Up Funding of HIT Young Talent Project。
文摘With the development of high frequency resonant DC-DC power converters,the system efficiency,power density and dynamic characteristics have been significantly improved.High frequency resonant DC-DC converters have been applied in DC grid,renewable energy,transportation,aerospace,point-of-load(POL)power supply and many other fields.Under high switching frequencies,switching loss and magnetic loss are the main concerns;thus,the resonant topology and planar magnetic are two key technologies to reduce loss.This review compares different resonant topologies and analyzes the advantages and disadvantages respectively,such as LLC circuit,dual active bridge(DAB)circuit,and other high order resonant circuits.For planar magnetic components,optimal winding structures,modeling methods and integration methods are thoroughly surveyed.With corresponding topics,the opportunities and challenges in the future development are summarized,which mainly focus on the characteristics of wide bandgap devices,such as the dynamic resistance,output capacitance loss and also the integrated module.This review can be a helpful guidance when designing high frequency resonant DC-DC converters.