A stochastic resource allocation model, based on the principles of Markov decision processes(MDPs), is proposed in this paper. In particular, a general-purpose framework is developed, which takes into account resource...A stochastic resource allocation model, based on the principles of Markov decision processes(MDPs), is proposed in this paper. In particular, a general-purpose framework is developed, which takes into account resource requests for both instant and future needs. The considered framework can handle two types of reservations(i.e., specified and unspecified time interval reservation requests), and implement an overbooking business strategy to further increase business revenues. The resulting dynamic pricing problems can be regarded as sequential decision-making problems under uncertainty, which is solved by means of stochastic dynamic programming(DP) based algorithms. In this regard, Bellman’s backward principle of optimality is exploited in order to provide all the implementation mechanisms for the proposed reservation pricing algorithm. The curse of dimensionality, as the inevitable issue of the DP both for instant resource requests and future resource reservations,occurs. In particular, an approximate dynamic programming(ADP) technique based on linear function approximations is applied to solve such scalability issues. Several examples are provided to show the effectiveness of the proposed approach.展开更多
This paper generalizes the classic resource allocation problem to the resource planning and allocation problem, in which the resource itself is a decision variable and the cost of each activity is uncertain when the r...This paper generalizes the classic resource allocation problem to the resource planning and allocation problem, in which the resource itself is a decision variable and the cost of each activity is uncertain when the resource is determined. The authors formulate this problem as a two-stage stochastic programming. The authors first propose an efficient algorithm for the case with finite states. Then, a sudgradient method is proposed for the general case and it is shown that the simple algorithm for the unique state case can be used to compute the subgradient of the objective function. Numerical experiments are conducted to show the effectiveness of the model.展开更多
The development of the assistive abilities regarding the decision-making process o fan Intelligent Control System (ICS) like a fuzzy expert system implies the development of its functionality and its ability of spec...The development of the assistive abilities regarding the decision-making process o fan Intelligent Control System (ICS) like a fuzzy expert system implies the development of its functionality and its ability of specification. Fuzzy expert systems can model fuzzy controllers, i.e., the knowledge representation and the abilities of making decisions corresponding to fuzzy expert systems are much more complicated that in the case of standard fuzzy controllers. The expert system acts also as a supervisor, creating meta-level reasoning on a set of fuzzy controllers, in order to choose the best one for the management of the process. Knowledge Management Systems (KMSs) is a new development paradigm of Intelligent Systems which has resulted from a synergy between fuzzy sets, artificial neural networks, evolutionary computation, machine learning, etc., broadening computer science, physics, economics, engineering, mathematics. This paper presents, after a synergic new paradigm of intelligent systems, as a practical case study the fuzzy and temporal properties of knowledge formalism embedded in an ICS. We are not dealing high with level reasoning methods, because we think that real-time problems can only be solved by rather low-level reasoning. Solving the match-time predictability problem would allow us to build much more powerful reasoning techniques.展开更多
This paper is concerned with the resource allocation problem based on data envelopment analysis (DEA) which is generally found in practice such as in public services and in production process. In management context,...This paper is concerned with the resource allocation problem based on data envelopment analysis (DEA) which is generally found in practice such as in public services and in production process. In management context, the resource allocation has to achieve the effective-efficient-equality aim and tries to balance the different desires of two management layers: central manager and each sector. In mathematical programming context, to solve the resource allocation asks for introducing many optimization techniques such as multiple-objective programming and goal programming. We construct an algorithm framework by using comprehensive DEA tools including CCR, BCC models, inverse DEA model, the most compromising common weights analysis model, and extra resource allocation algorithm. Returns to scale characteristic is put major place for analyzing DMUs' scale economies and used to select DMU candidates before resource allocation. By combining extra resource allocation algorithm with scale economies target, we propose a resource allocation solution, which can achieve the effective-efficient-equality target and also provide information for future resource allocation. Many numerical examples are discussed in this paper, which also verify our work.展开更多
In this paper,we consider a distributed resource allocation problem of minimizing a global convex function formed by a sum of local convex functions with coupling constraints.Based on neighbor communication and stocha...In this paper,we consider a distributed resource allocation problem of minimizing a global convex function formed by a sum of local convex functions with coupling constraints.Based on neighbor communication and stochastic gradient,a distributed stochastic mirror descent algorithm is designed for the distributed resource allocation problem.Sublinear convergence to an optimal solution of the proposed algorithm is given when the second moments of the gradient noises are summable.A numerical example is also given to illustrate the effectiveness of the proposed algorithm.展开更多
This paper considers a distributed nonsmooth resource allocation problem of minimizing a global convex function formed by a sum of local nonsmooth convex functions with coupled constraints.A distributed communication-...This paper considers a distributed nonsmooth resource allocation problem of minimizing a global convex function formed by a sum of local nonsmooth convex functions with coupled constraints.A distributed communication-efficient mirror-descent algorithm,which can reduce communication rounds between agents over the network,is designed for the distributed resource allocation problem.By employing communication-sliding methods,agents can find aε-solution in O(1/ε)communication rounds while maintaining O(1/ε^(2))subgradient evaluations for nonsmooth convex functions.A numerical example is also given to illustrate the effectiveness of the proposed algorithm.展开更多
文摘A stochastic resource allocation model, based on the principles of Markov decision processes(MDPs), is proposed in this paper. In particular, a general-purpose framework is developed, which takes into account resource requests for both instant and future needs. The considered framework can handle two types of reservations(i.e., specified and unspecified time interval reservation requests), and implement an overbooking business strategy to further increase business revenues. The resulting dynamic pricing problems can be regarded as sequential decision-making problems under uncertainty, which is solved by means of stochastic dynamic programming(DP) based algorithms. In this regard, Bellman’s backward principle of optimality is exploited in order to provide all the implementation mechanisms for the proposed reservation pricing algorithm. The curse of dimensionality, as the inevitable issue of the DP both for instant resource requests and future resource reservations,occurs. In particular, an approximate dynamic programming(ADP) technique based on linear function approximations is applied to solve such scalability issues. Several examples are provided to show the effectiveness of the proposed approach.
基金supported by in part by the National Natural Science Foundation of China under Grant Nos.71390334 and 71132008the MOE Project of Key Research Institute of Humanities and Social Sciences at Universities under Grant No.11JJD630004Program for New Century Excellent Talents in University under Grant No.NCET-13-0660
文摘This paper generalizes the classic resource allocation problem to the resource planning and allocation problem, in which the resource itself is a decision variable and the cost of each activity is uncertain when the resource is determined. The authors formulate this problem as a two-stage stochastic programming. The authors first propose an efficient algorithm for the case with finite states. Then, a sudgradient method is proposed for the general case and it is shown that the simple algorithm for the unique state case can be used to compute the subgradient of the objective function. Numerical experiments are conducted to show the effectiveness of the model.
文摘The development of the assistive abilities regarding the decision-making process o fan Intelligent Control System (ICS) like a fuzzy expert system implies the development of its functionality and its ability of specification. Fuzzy expert systems can model fuzzy controllers, i.e., the knowledge representation and the abilities of making decisions corresponding to fuzzy expert systems are much more complicated that in the case of standard fuzzy controllers. The expert system acts also as a supervisor, creating meta-level reasoning on a set of fuzzy controllers, in order to choose the best one for the management of the process. Knowledge Management Systems (KMSs) is a new development paradigm of Intelligent Systems which has resulted from a synergy between fuzzy sets, artificial neural networks, evolutionary computation, machine learning, etc., broadening computer science, physics, economics, engineering, mathematics. This paper presents, after a synergic new paradigm of intelligent systems, as a practical case study the fuzzy and temporal properties of knowledge formalism embedded in an ICS. We are not dealing high with level reasoning methods, because we think that real-time problems can only be solved by rather low-level reasoning. Solving the match-time predictability problem would allow us to build much more powerful reasoning techniques.
基金This research is supported by 973 Program under Grant No.2006CB701306
文摘This paper is concerned with the resource allocation problem based on data envelopment analysis (DEA) which is generally found in practice such as in public services and in production process. In management context, the resource allocation has to achieve the effective-efficient-equality aim and tries to balance the different desires of two management layers: central manager and each sector. In mathematical programming context, to solve the resource allocation asks for introducing many optimization techniques such as multiple-objective programming and goal programming. We construct an algorithm framework by using comprehensive DEA tools including CCR, BCC models, inverse DEA model, the most compromising common weights analysis model, and extra resource allocation algorithm. Returns to scale characteristic is put major place for analyzing DMUs' scale economies and used to select DMU candidates before resource allocation. By combining extra resource allocation algorithm with scale economies target, we propose a resource allocation solution, which can achieve the effective-efficient-equality target and also provide information for future resource allocation. Many numerical examples are discussed in this paper, which also verify our work.
基金the National Key Research and Development Program of China(No.2016YFB0901900)the National Natural Science Foundation of China(No.61733018)the China Special Postdoctoral Science Foundation Funded Project(No.Y990075G21).
文摘In this paper,we consider a distributed resource allocation problem of minimizing a global convex function formed by a sum of local convex functions with coupling constraints.Based on neighbor communication and stochastic gradient,a distributed stochastic mirror descent algorithm is designed for the distributed resource allocation problem.Sublinear convergence to an optimal solution of the proposed algorithm is given when the second moments of the gradient noises are summable.A numerical example is also given to illustrate the effectiveness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China under Grant Nos.72101026,61621063the State Key Laboratory of Intelligent Control and Decision of Complex Systems。
文摘This paper considers a distributed nonsmooth resource allocation problem of minimizing a global convex function formed by a sum of local nonsmooth convex functions with coupled constraints.A distributed communication-efficient mirror-descent algorithm,which can reduce communication rounds between agents over the network,is designed for the distributed resource allocation problem.By employing communication-sliding methods,agents can find aε-solution in O(1/ε)communication rounds while maintaining O(1/ε^(2))subgradient evaluations for nonsmooth convex functions.A numerical example is also given to illustrate the effectiveness of the proposed algorithm.