The small-cell technology is promising for spectral-efficiency enhancement. However, it usually requires a huge amount of energy consumption. In this paper, queue state information and channel state information are jo...The small-cell technology is promising for spectral-efficiency enhancement. However, it usually requires a huge amount of energy consumption. In this paper, queue state information and channel state information are jointly utilized to minimize the time average of overall energy consumption for a multi-carrier small-cell network, where the inter-cell interference is an intractable problem. Based on the Lyapunov optimization theory, the problem could be solved by dynamically optimizing the problem of user assignment, carrier allocation and power allocation in each time slot. As the optimization problem is NP-hard, we propose a heuristic iteration algorithm to solve it. Numerical results verify that the heuristic algorithm offers an approximate performance as the brute-force algorithm. Moreover, it could bring down the overall energy consumption to different degrees according to the variation of traffic load. Meanwhile, it could achieve the same sum rate as the algorithm which focuses on maximizing system sum rate.展开更多
Cache-enabled small cell networks have been regarded as a promising approach for network operators to cope with the explosive data traffic growth in future 5 G networks. However, the user association and resource allo...Cache-enabled small cell networks have been regarded as a promising approach for network operators to cope with the explosive data traffic growth in future 5 G networks. However, the user association and resource allocation mechanism has not been thoroughly studied under given content placement situation. In this paper, we formulate the joint optimization problem of user association and resource allocation as a mixed integer nonlinear programming(MINLP) problem aiming at deriving a balance between the total utility of data rates and the total data rates retrieved from caches. To solve this problem, we propose a distributed relaxing-rounding method. Simulation results demonstrate that the distributed relaxing-rounding method outperforms traditional max-SINR method and range-expansion method in terms of both total utility of data rates and total data rates retrieved from caches in practical scenarios. In addition, effects of storage and backhaul capacities on the performance are also studied.展开更多
In this paper,a distributed chunkbased optimization algorithm is proposed for the resource allocation in broadband ultra-dense small cell networks.Based on the proposed algorithm,the power and subcarrier allocation pr...In this paper,a distributed chunkbased optimization algorithm is proposed for the resource allocation in broadband ultra-dense small cell networks.Based on the proposed algorithm,the power and subcarrier allocation problems are jointly optimized.In order to make the resource allocation suitable for large scale networks,the optimization problem is decomposed first based on an effective decomposition algorithm named optimal condition decomposition(OCD) algorithm.Furthermore,aiming at reducing implementation complexity,the subcarriers are divided into chunks and are allocated chunk by chunk.The simulation results show that the proposed algorithm achieves more superior performance than uniform power allocation scheme and Lagrange relaxation method,and then the proposed algorithm can strike a balance between the complexity and performance of the multi-carrier Ultra-Dense Networks.展开更多
基金partially supported by National Basic Research Program of China (2013CB329002)National Natural Science Foundation of China (61631013)+6 种基金The National High Technology Research and Development Program of China(2014AA01A703)Science Fund for Creative Research Groups of NSFC (61321061)National Major Project (2017ZX03001011)International Science and Technology Cooperation Program (2014DFT10320)National Science Foundation of China (61701457 \& 61771286)Tsinghua-Qualcomm Joint Research ProgramHuawei Innovation Research Program
文摘The small-cell technology is promising for spectral-efficiency enhancement. However, it usually requires a huge amount of energy consumption. In this paper, queue state information and channel state information are jointly utilized to minimize the time average of overall energy consumption for a multi-carrier small-cell network, where the inter-cell interference is an intractable problem. Based on the Lyapunov optimization theory, the problem could be solved by dynamically optimizing the problem of user assignment, carrier allocation and power allocation in each time slot. As the optimization problem is NP-hard, we propose a heuristic iteration algorithm to solve it. Numerical results verify that the heuristic algorithm offers an approximate performance as the brute-force algorithm. Moreover, it could bring down the overall energy consumption to different degrees according to the variation of traffic load. Meanwhile, it could achieve the same sum rate as the algorithm which focuses on maximizing system sum rate.
基金supported by National Natural Science Foundation of China under Grants No. 61371087 and 61531013The Research Fund of Ministry of Education-China Mobile (MCM20150102)
文摘Cache-enabled small cell networks have been regarded as a promising approach for network operators to cope with the explosive data traffic growth in future 5 G networks. However, the user association and resource allocation mechanism has not been thoroughly studied under given content placement situation. In this paper, we formulate the joint optimization problem of user association and resource allocation as a mixed integer nonlinear programming(MINLP) problem aiming at deriving a balance between the total utility of data rates and the total data rates retrieved from caches. To solve this problem, we propose a distributed relaxing-rounding method. Simulation results demonstrate that the distributed relaxing-rounding method outperforms traditional max-SINR method and range-expansion method in terms of both total utility of data rates and total data rates retrieved from caches in practical scenarios. In addition, effects of storage and backhaul capacities on the performance are also studied.
基金supported in part by Beijing Natural Science Foundation(4152047)the 863 project No.2014AA01A701+1 种基金111 Project of China under Grant B14010China Mobile Research Institute under grant[2014]451
文摘In this paper,a distributed chunkbased optimization algorithm is proposed for the resource allocation in broadband ultra-dense small cell networks.Based on the proposed algorithm,the power and subcarrier allocation problems are jointly optimized.In order to make the resource allocation suitable for large scale networks,the optimization problem is decomposed first based on an effective decomposition algorithm named optimal condition decomposition(OCD) algorithm.Furthermore,aiming at reducing implementation complexity,the subcarriers are divided into chunks and are allocated chunk by chunk.The simulation results show that the proposed algorithm achieves more superior performance than uniform power allocation scheme and Lagrange relaxation method,and then the proposed algorithm can strike a balance between the complexity and performance of the multi-carrier Ultra-Dense Networks.