Renewable energy is created by renewable natural resources such as geothermal heat,sunlight,tides,rain,and wind.Energy resources are vital for all countries in terms of their economies and politics.As a result,selecti...Renewable energy is created by renewable natural resources such as geothermal heat,sunlight,tides,rain,and wind.Energy resources are vital for all countries in terms of their economies and politics.As a result,selecting the optimal option for any country is critical in terms of energy investments.Every country is nowadays planning to increase the share of renewable energy in their universal energy sources as a result of global warming.In the present work,the authors suggest fuzzy multi-characteristic decision-making approaches for renew-able energy source selection,and fuzzy set theory is a valuable methodology for dealing with uncertainty in the presence of incomplete or ambiguous data.This study employed a hybrid method for order of preference by resemblance to an ideal solution based on fuzzy analytical network process-technique,which agrees with professional assessment scores to be linguistic phrases,fuzzy numbers,or crisp numbers.The hybrid methodology is based on fuzzy set ideologies,which calculate alternatives in accordance with professional functional requirements using objective or subjective characteristics.The best-suited renewable energy alternative is discovered using the approach presented.展开更多
Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning frame...Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.展开更多
Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery a...Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC.展开更多
In the context of economic globalization,while multinational enterprises from developed countries occupy a high-end position in the global value chain,enterprises from developing countries are often marginalized in th...In the context of economic globalization,while multinational enterprises from developed countries occupy a high-end position in the global value chain,enterprises from developing countries are often marginalized in the world market.In China,resource-based state-owned enterprises(SOEs)are tasked with the mission of safeguarding resource security,and their internationalization development ideas and strategic deployment are significantly and fundamentally different from those of other non-state-owned enterprises and large multinational corporations.This study provides ideas for the globalization policies of enterprises in developing countries.We consider J Group in western China as a case and discuss its productive investment and global production network development from 2010 to 2019.We found that J Group was‘Partly'globalized,and there are multiple core nodes with the characteristics of centralized and decentralized coexistence in the production network;in addition,the overall layout centre shifted to Southeast Asia and China;however,its global production was restricted by the enterprise's investment security considerations,support and restrictions of the home country,political security risk of the host country,and sanctions from the West.These findings provide insights for future research:under the wave of anti-globalization and'internal circulation as the main body',resource SOEs should consider the potential risk of investment,especially keeping the middle and downstream industrial chain in China as much as possible.展开更多
With the rapid development of Network Function Virtualization(NFV),the problem of low resource utilizationin traditional data centers is gradually being addressed.However,existing research does not optimize both local...With the rapid development of Network Function Virtualization(NFV),the problem of low resource utilizationin traditional data centers is gradually being addressed.However,existing research does not optimize both localand global allocation of resources in data centers.Hence,we propose an adaptive hybrid optimization strategy thatcombines dynamic programming and neural networks to improve resource utilization and service quality in datacenters.Our approach encompasses a service function chain simulation generator,a parallel architecture servicesystem,a dynamic programming strategy formaximizing the utilization of local server resources,a neural networkfor predicting the global utilization rate of resources and a global resource optimization strategy for bottleneck andredundant resources.With the implementation of our local and global resource allocation strategies,the systemperformance is significantly optimized through simulation.展开更多
Federated Edge Learning(FEL),an emerging distributed Machine Learning(ML)paradigm,enables model training in a distributed environment while ensuring user privacy by using physical separation for each user’s data.Howe...Federated Edge Learning(FEL),an emerging distributed Machine Learning(ML)paradigm,enables model training in a distributed environment while ensuring user privacy by using physical separation for each user’s data.However,with the development of complex application scenarios such as the Internet of Things(IoT)and Smart Earth,the conventional resource allocation schemes can no longer effectively support these growing computational and communication demands.Therefore,joint resource optimization may be the key solution to the scaling problem.This paper simultaneously addresses the multifaceted challenges of computation and communication,with the growing multiple resource demands.We systematically review the joint allocation strategies for different resources(computation,data,communication,and network topology)in FEL,and summarize the advantages in improving system efficiency,reducing latency,enhancing resource utilization,and enhancing robustness.In addition,we present the potential ability of joint optimization to enhance privacy preservation by reducing communication requirements,indirectly.This work not only provides theoretical support for resource management in federated learning(FL)systems,but also provides ideas for potential optimal deployment in multiple real-world scenarios.By thoroughly discussing the current challenges and future research directions,it also provides some important insights into multi-resource optimization in complex application environments.展开更多
While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present...While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present a novel robust reinforcement learning approach with safety guarantees to attain trustworthy decision-making for autonomous vehicles.The proposed technique ensures decision trustworthiness in terms of policy robustness and collision safety.Specifically,an adversary model is learned online to simulate the worst-case uncertainty by approximating the optimal adversarial perturbations on the observed states and environmental dynamics.In addition,an adversarial robust actor-critic algorithm is developed to enable the agent to learn robust policies against perturbations in observations and dynamics.Moreover,we devise a safety mask to guarantee the collision safety of the autonomous driving agent during both the training and testing processes using an interpretable knowledge model known as the Responsibility-Sensitive Safety Model.Finally,the proposed approach is evaluated through both simulations and experiments.These results indicate that the autonomous driving agent can make trustworthy decisions and drastically reduce the number of collisions through robust safety policies.展开更多
Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professio...Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professional sports analytics realm but also the academic AI research community. AI brings gamechanging approaches for soccer analytics where soccer has been a typical benchmark for AI research. The combination has been an emerging topic. In this paper, soccer match analytics are taken as a complete observation-orientation-decision-action(OODA) loop.In addition, as in AI frameworks such as that for reinforcement learning, interacting with a virtual environment enables an evolving model. Therefore, both soccer analytics in the real world and virtual domains are discussed. With the intersection of the OODA loop and the real-virtual domains, available soccer data, including event and tracking data, and diverse orientation and decisionmaking models for both real-world and virtual soccer matches are comprehensively reviewed. Finally, some promising directions in this interdisciplinary area are pointed out. It is claimed that paradigms for both professional sports analytics and AI research could be combined. Moreover, it is quite promising to bridge the gap between the real and virtual domains for soccer match analysis and decision-making.展开更多
Cloud Datacenter Network(CDN)providers usually have the option to scale their network structures to allow for far more resource capacities,though such scaling options may come with exponential costs that contradict th...Cloud Datacenter Network(CDN)providers usually have the option to scale their network structures to allow for far more resource capacities,though such scaling options may come with exponential costs that contradict their utility objectives.Yet,besides the cost of the physical assets and network resources,such scaling may also imposemore loads on the electricity power grids to feed the added nodes with the required energy to run and cool,which comes with extra costs too.Thus,those CDNproviders who utilize their resources better can certainly afford their services at lower price-units when compared to others who simply choose the scaling solutions.Resource utilization is a quite challenging process;indeed,clients of CDNs usually tend to exaggerate their true resource requirements when they lease their resources.Service providers are committed to their clients with Service Level Agreements(SLAs).Therefore,any amendment to the resource allocations needs to be approved by the clients first.In this work,we propose deploying a Stackelberg leadership framework to formulate a negotiation game between the cloud service providers and their client tenants.Through this,the providers seek to retrieve those leased unused resources from their clients.Cooperation is not expected from the clients,and they may ask high price units to return their extra resources to the provider’s premises.Hence,to motivate cooperation in such a non-cooperative game,as an extension to theVickery auctions,we developed an incentive-compatible pricingmodel for the returned resources.Moreover,we also proposed building a behavior belief function that shapes the way of negotiation and compensation for each client.Compared to other benchmark models,the assessment results showthat our proposed models provide for timely negotiation schemes,allowing for better resource utilization rates,higher utilities,and grid-friend CDNs.展开更多
The cloud platform has limited defense resources to fully protect the edge servers used to process crowd sensing data in Internet of Things.To guarantee the network's overall security,we present a network defense ...The cloud platform has limited defense resources to fully protect the edge servers used to process crowd sensing data in Internet of Things.To guarantee the network's overall security,we present a network defense resource allocation with multi-armed bandits to maximize the network's overall benefit.Firstly,we propose the method for dynamic setting of node defense resource thresholds to obtain the defender(attacker)benefit function of edge servers(nodes)and distribution.Secondly,we design a defense resource sharing mechanism for neighboring nodes to obtain the defense capability of nodes.Subsequently,we use the decomposability and Lipschitz conti-nuity of the defender's total expected utility to reduce the difference between the utility's discrete and continuous arms and analyze the difference theoretically.Finally,experimental results show that the method maximizes the defender's total expected utility and reduces the difference between the discrete and continuous arms of the utility.展开更多
Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values...Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values or make ethical decisions,they may not meet the expectations of humans.Traditionally,an ethical decision-making framework is constructed by rule-based or statistical approaches.In this paper,we propose an ethical decision-making framework based on incremental ILP(Inductive Logic Programming),which can overcome the brittleness of rule-based approaches and little interpretability of statistical approaches.As the current incremental ILP makes it difficult to solve conflicts,we propose a novel ethical decision-making framework considering conflicts in this paper,which adopts our proposed incremental ILP system.The framework consists of two processes:the learning process and the deduction process.The first process records bottom clauses with their score functions and learns rules guided by the entailment and the score function.The second process obtains an ethical decision based on the rules.In an ethical scenario about chatbots for teenagers’mental health,we verify that our framework can learn ethical rules and make ethical decisions.Besides,we extract incremental ILP from the framework and compare it with the state-of-the-art ILP systems based on ASP(Answer Set Programming)focusing on conflict resolution.The results of comparisons show that our proposed system can generate better-quality rules than most other systems.展开更多
Stroke is a chronic cerebrovascular disease that carries a high risk.Stroke risk assessment is of great significance in preventing,reversing and reducing the spread and the health hazards caused by stroke.Aiming to ob...Stroke is a chronic cerebrovascular disease that carries a high risk.Stroke risk assessment is of great significance in preventing,reversing and reducing the spread and the health hazards caused by stroke.Aiming to objectively predict and identify strokes,this paper proposes a new stroke risk assessment decision-making model named Logistic-AdaBoost(Logistic-AB)based on machine learning.First,the categorical boosting(CatBoost)method is used to perform feature selection for all features of stroke,and 8 main features are selected to form a new index evaluation system to predict the risk of stroke.Second,the borderline synthetic minority oversampling technique(SMOTE)algorithm is applied to transform the unbalanced stroke dataset into a balanced dataset.Finally,the stroke risk assessment decision-makingmodel Logistic-AB is constructed,and the overall prediction performance of this new model is evaluated by comparing it with ten other similar models.The comparison results show that the new model proposed in this paper performs better than the two single algorithms(logistic regression and AdaBoost)on the four indicators of recall,precision,F1 score,and accuracy,and the overall performance of the proposed model is better than that of common machine learning algorithms.The Logistic-AB model presented in this paper can more accurately predict patients’stroke risk.展开更多
The performance of massive MIMO systems relies heavily on the availability of Channel State Information at the Transmitter(CSIT).A large amount of work has been devoted to reducing the CSIT acquisition overhead at the...The performance of massive MIMO systems relies heavily on the availability of Channel State Information at the Transmitter(CSIT).A large amount of work has been devoted to reducing the CSIT acquisition overhead at the pilot training and/or CsI feedback stage.In fact,the downlink communication generally includes three stages,i.e.,pilot training,CsI feedback,and data transmission.These three stages are mutually related and jointly determine the overall system performance.Unfortunately,there exist few studies on the reduction of csIT acquisition overhead from the global point of view.In this paper,we integrate the Minimum Mean Square Error(MMSE)channel estimation,Random Vector Quantization(RVQ)based limited feedback and Maximal Ratio Combining(MRC)precoding into a unified framework for investigating the resource allocation problem.In particular,we first approximate the covariance matrix of the quantization error with a simple expression and derive an analytical expression of the received Signal-to-Noise Ratio(SNR)based on the deterministic equivalence theory.Then the three performance metrics(the spectral efficiency,energy efficiency,and total energy consumption)oriented problems are formulated analytically.With practical system requirements,these three metrics can be collaboratively optimized.Finally,we propose an optimization solver to derive the optimal partition of channel coherence time.Experiment results verify the benefits of the proposed resource allocation schemes under three different scenarios and illustrate the tradeoff of resource allocation between three stages.展开更多
Purpose–Material selection,driven by wide and often conflicting objectives,is an important,sometimes difficult problem in material engineering.In this context,multi-criteria decision-making(MCDM)methodologies are eff...Purpose–Material selection,driven by wide and often conflicting objectives,is an important,sometimes difficult problem in material engineering.In this context,multi-criteria decision-making(MCDM)methodologies are effective.An approach of MCDM is needed to cater to criteria of material assortment simultaneously.More firms are now concerned about increasing their productivity using mathematical tools.To occupy a gap in the previous literature this research recommends an integrated MCDM and mathematical Bi-objective model for the selection of material.In addition,by using the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS),the inherent ambiguities of decision-makers in paired evaluations are considered in this research.It goes on to construct a mathematical bi-objective model for determining the best item to purchase.Design/methodology/approach–The entropy perspective is implemented in this paper to evaluate the weight parameters,while the TOPSIS technique is used to determine the best and worst intermediate pipe materials for automotive exhaust system.The intermediate pipes are used to join the components of the exhaust systems.The materials usually used to manufacture intermediate pipe are SUS 436LM,SUS 430,SUS 304,SUS 436L,SUH 409 L,SUS 441 L and SUS 439L.These seven materials are evaluated based on tensile strength(TS),hardness(H),elongation(E),yield strength(YS)and cost(C).A hybrid methodology combining entropy-based criteria weighting,with the TOPSIS for alternative ranking,is pursued to identify the optimal design material for an engineered application in this paper.This study aims to help while filling the information gap in selecting the most suitable material for use in the exhaust intermediate pipes.After that,the authors searched for and considered eight materials and evaluated them on the following five criteria:(1)TS,(2)YS,(3)H,(4)E and(5)C.The first two criteria have been chosen because they can have a lot of influence on the behavior of the exhaust intermediate pipes,on their performance and on the cost.In this structure,the weights of the criteria are calculated objectively through the entropy method in order to have an unbiased assessment.This essentially measures the quantity of information each criterion contribution,indicating the relative importance of these criteria better.Subsequently,the materials were ranked using the TOPSIS method in terms of their relative performance by measuring each material from an ideal solution to determine the best alternative.The results show that SUS 309,SUS 432L and SUS 436 LM are the first three materials that the exhaust intermediate pipe optimal design should consider.Findings–The material matrix of the decision presented in Table 3 was normalized through Equation 5,as shown in Table 5,and the matrix was multiplied with weighting criteriaß_j.The obtained weighted normalized matrix V_ij is presented in Table 6.However,the ideal,worst and best value was ascertained by employing Equation 7.This study is based on the selection of material for the development of intermediate pipe using MCDM,and it involves four basic stages,i.e.method of translation criteria,screening process,method of ranking and search for methods.The selection was done through the TOPSIS method,and the criteria weight was obtained by the entropy method.The result showed that the top three materials are SUS 309,SUS 432L and SUS 436 LM,respectively.For the future work,it is suggested to select more alternatives and criteria.The comparison can also be done by using different MCDM techniques like and Choice Expressing Reality(ELECTRE),Decision-Making Trial and Evaluation Laboratory(DEMATEL)and Preference Ranking Organization Method for Enrichment Evaluation(PROMETHEE).Originality/value–The results provide important conclusions for material selection in this targeted application,verifying the employment of mutual entropy-TOPSIS methodology for a series of difficult engineering decisions in material engineering concepts that combine superior capacity with better performance as well as cost-efficiency in various engineering design.展开更多
Users and edge servers are not fullymutually trusted inmobile edge computing(MEC),and hence blockchain can be introduced to provide trustableMEC.In blockchain-basedMEC,each edge server functions as a node in bothMEC a...Users and edge servers are not fullymutually trusted inmobile edge computing(MEC),and hence blockchain can be introduced to provide trustableMEC.In blockchain-basedMEC,each edge server functions as a node in bothMEC and blockchain,processing users’tasks and then uploading the task related information to the blockchain.That is,each edge server runs both users’offloaded tasks and blockchain tasks simultaneously.Note that there is a trade-off between the resource allocation for MEC and blockchain tasks.Therefore,the allocation of the resources of edge servers to the blockchain and theMEC is crucial for the processing delay of blockchain-based MEC.Most of the existing research tackles the problem of resource allocation in either blockchain or MEC,which leads to unfavorable performance of the blockchain-based MEC system.In this paper,we study how to allocate the computing resources of edge servers to the MEC and blockchain tasks with the aimtominimize the total systemprocessing delay.For the problem,we propose a computing resource Allocation algorithmfor Blockchain-based MEC(ABM)which utilizes the Slater’s condition,Karush-Kuhn-Tucker(KKT)conditions,partial derivatives of the Lagrangian function and subgradient projection method to obtain the solution.Simulation results show that ABM converges and effectively reduces the processing delay of blockchain-based MEC.展开更多
A detailed understanding of the distribution and potential of natural gas hydrate(NGHs)resources is crucial to fostering the industrialization of those resources in the South China Sea,where NGHs are abundant.In this ...A detailed understanding of the distribution and potential of natural gas hydrate(NGHs)resources is crucial to fostering the industrialization of those resources in the South China Sea,where NGHs are abundant.In this study,this study analyzed the applicability of resource evaluation methods,including the volumetric,genesis,and analogy methods,and estimated NGHs resource potential in the South China Sea by using scientific resource evaluation methods based on the factors controlling the geological accumulation and the reservoir characteristics of NGHs.Furthermore,this study compared the evaluation results of NGHs resource evaluations in representative worldwise sea areas via rational analysis.The results of this study are as follows:(1)The gas hydrate accumulation in the South China Sea is characterized by multiple sources of gas supply,multi-channel migration,and extensive accumulation,which are significantly different from those of oil and gas and other unconventional resources.(2)The evaluation of gas hydrate resources in the South China Sea is a highly targeted,stratified,and multidisciplinary evaluation of geological resources under the framework of a multi-type gas hydrate resource evaluation system and focuses on the comprehensive utilization of multi-source heterogeneous data.(3)Global NGHs resources is n×10^(15)m^(3),while the NGHs resources in the South China Sea are estimated to be 10^(13)m^(3),which is comparable to the abundance of typical marine NGHs deposits in other parts of the world.In the South China Sea,the NGHs resources have a broad prospect and provide a substantial resource base for production tests and industrialization of NGHs.展开更多
Currently,applications accessing remote computing resources through cloud data centers is the main mode of operation,but this mode of operation greatly increases communication latency and reduces overall quality of se...Currently,applications accessing remote computing resources through cloud data centers is the main mode of operation,but this mode of operation greatly increases communication latency and reduces overall quality of service(QoS)and quality of experience(QoE).Edge computing technology extends cloud service functionality to the edge of the mobile network,closer to the task execution end,and can effectivelymitigate the communication latency problem.However,the massive and heterogeneous nature of servers in edge computing systems brings new challenges to task scheduling and resource management,and the booming development of artificial neural networks provides us withmore powerfulmethods to alleviate this limitation.Therefore,in this paper,we proposed a time series forecasting model incorporating Conv1D,LSTM and GRU for edge computing device resource scheduling,trained and tested the forecasting model using a small self-built dataset,and achieved competitive experimental results.展开更多
The satellite-terrestrial networks possess the ability to transcend geographical constraints inherent in traditional communication networks,enabling global coverage and offering users ubiquitous computing power suppor...The satellite-terrestrial networks possess the ability to transcend geographical constraints inherent in traditional communication networks,enabling global coverage and offering users ubiquitous computing power support,which is an important development direction of future communications.In this paper,we take into account a multi-scenario network model under the coverage of low earth orbit(LEO)satellite,which can provide computing resources to users in faraway areas to improve task processing efficiency.However,LEO satellites experience limitations in computing and communication resources and the channels are time-varying and complex,which makes the extraction of state information a daunting task.Therefore,we explore the dynamic resource management issue pertaining to joint computing,communication resource allocation and power control for multi-access edge computing(MEC).In order to tackle this formidable issue,we undertake the task of transforming the issue into a Markov decision process(MDP)problem and propose the self-attention based dynamic resource management(SABDRM)algorithm,which effectively extracts state information features to enhance the training process.Simulation results show that the proposed algorithm is capable of effectively reducing the long-term average delay and energy consumption of the tasks.展开更多
Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is a...Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is also beneficial for three parametric data.By Pythagorean fuzzy sets,the difference is calculated only between two parameters(membership and non-membership).According to human thoughts,fuzzy data can be found in three parameters(membership uncertainty,and non-membership).So,to make a compromise decision,comparing Sq-LDFSs is essential.Existing measures of different fuzzy sets do,however,can have several flaws that can lead to counterintuitive results.For instance,they treat any increase or decrease in the membership degree as the same as the non-membership degree because the uncertainty does not change,even though each parameter has a different implication.In the Sq-LDFSs comparison,this research develops the differentialmeasure(DFM).Themain goal of the DFM is to cover the unfair arguments that come from treating different types of FSs opposing criteria equally.Due to their relative positions in the attribute space and the similarity of their membership and non-membership degrees,two Sq-LDFSs formthis preference connectionwhen the uncertainty remains same in both sets.According to the degree of superiority or inferiority,two Sq-LDFSs are shown as identical,equivalent,superior,or inferior over one another.The suggested DFM’s fundamental characteristics are provided.Based on the newly developed DFM,a unique approach tomultiple criterion group decision-making is offered.Our suggestedmethod verifies the novel way of calculating the expert weights for Sq-LDFSS as in PFSs.Our proposed technique in three parameters is applied to evaluate solid-state drives and choose the optimum photovoltaic cell in two applications by taking uncertainty parameter zero.The method’s applicability and validity shown by the findings are contrasted with those obtained using various other existing approaches.To assess its stability and usefulness,a sensitivity analysis is done.展开更多
Collaborative edge computing is a promising direction to handle the computation intensive tasks in B5G wireless networks.However,edge computing servers(ECSs)from different operators may not trust each other,and thus t...Collaborative edge computing is a promising direction to handle the computation intensive tasks in B5G wireless networks.However,edge computing servers(ECSs)from different operators may not trust each other,and thus the incentives for collaboration cannot be guaranteed.In this paper,we propose a consortium blockchain enabled collaborative edge computing framework,where users can offload computing tasks to ECSs from different operators.To minimize the total delay of users,we formulate a joint task offloading and resource optimization problem,under the constraint of the computing capability of each ECS.We apply the Tammer decomposition method and heuristic optimization algorithms to obtain the optimal solution.Finally,we propose a reputation based node selection approach to facilitate the consensus process,and also consider a completion time based primary node selection to avoid monopolization of certain edge node and enhance the security of the blockchain.Simulation results validate the effectiveness of the proposed algorithm,and the total delay can be reduced by up to 40%compared with the non-cooperative case.展开更多
文摘Renewable energy is created by renewable natural resources such as geothermal heat,sunlight,tides,rain,and wind.Energy resources are vital for all countries in terms of their economies and politics.As a result,selecting the optimal option for any country is critical in terms of energy investments.Every country is nowadays planning to increase the share of renewable energy in their universal energy sources as a result of global warming.In the present work,the authors suggest fuzzy multi-characteristic decision-making approaches for renew-able energy source selection,and fuzzy set theory is a valuable methodology for dealing with uncertainty in the presence of incomplete or ambiguous data.This study employed a hybrid method for order of preference by resemblance to an ideal solution based on fuzzy analytical network process-technique,which agrees with professional assessment scores to be linguistic phrases,fuzzy numbers,or crisp numbers.The hybrid methodology is based on fuzzy set ideologies,which calculate alternatives in accordance with professional functional requirements using objective or subjective characteristics.The best-suited renewable energy alternative is discovered using the approach presented.
基金the financial support of the National Key Research and Development Program of China(2020AAA0108100)the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Shanghai Gaofeng and Gaoyuan Project for University Academic Program Development for funding。
文摘Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.
基金the National Natural Science Foundation of China(No.52374279)the Natural Science Foundation of Shaanxi Province(No.2023-YBGY-055).
文摘Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC.
基金supported by National Natural Science Foundation of China(Grants No.41971198 and 42371198)Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2023-it24).
文摘In the context of economic globalization,while multinational enterprises from developed countries occupy a high-end position in the global value chain,enterprises from developing countries are often marginalized in the world market.In China,resource-based state-owned enterprises(SOEs)are tasked with the mission of safeguarding resource security,and their internationalization development ideas and strategic deployment are significantly and fundamentally different from those of other non-state-owned enterprises and large multinational corporations.This study provides ideas for the globalization policies of enterprises in developing countries.We consider J Group in western China as a case and discuss its productive investment and global production network development from 2010 to 2019.We found that J Group was‘Partly'globalized,and there are multiple core nodes with the characteristics of centralized and decentralized coexistence in the production network;in addition,the overall layout centre shifted to Southeast Asia and China;however,its global production was restricted by the enterprise's investment security considerations,support and restrictions of the home country,political security risk of the host country,and sanctions from the West.These findings provide insights for future research:under the wave of anti-globalization and'internal circulation as the main body',resource SOEs should consider the potential risk of investment,especially keeping the middle and downstream industrial chain in China as much as possible.
基金the Fundamental Research Program of Guangdong,China,under Grants 2020B1515310023 and 2023A1515011281in part by the National Natural Science Foundation of China under Grant 61571005.
文摘With the rapid development of Network Function Virtualization(NFV),the problem of low resource utilizationin traditional data centers is gradually being addressed.However,existing research does not optimize both localand global allocation of resources in data centers.Hence,we propose an adaptive hybrid optimization strategy thatcombines dynamic programming and neural networks to improve resource utilization and service quality in datacenters.Our approach encompasses a service function chain simulation generator,a parallel architecture servicesystem,a dynamic programming strategy formaximizing the utilization of local server resources,a neural networkfor predicting the global utilization rate of resources and a global resource optimization strategy for bottleneck andredundant resources.With the implementation of our local and global resource allocation strategies,the systemperformance is significantly optimized through simulation.
基金supported in part by the National Natural Science Foundation of China under Grant No.61701197in part by the National Key Research and Development Program of China under Grant No.2021YFA1000500(4)in part by the 111 Project under Grant No.B23008.
文摘Federated Edge Learning(FEL),an emerging distributed Machine Learning(ML)paradigm,enables model training in a distributed environment while ensuring user privacy by using physical separation for each user’s data.However,with the development of complex application scenarios such as the Internet of Things(IoT)and Smart Earth,the conventional resource allocation schemes can no longer effectively support these growing computational and communication demands.Therefore,joint resource optimization may be the key solution to the scaling problem.This paper simultaneously addresses the multifaceted challenges of computation and communication,with the growing multiple resource demands.We systematically review the joint allocation strategies for different resources(computation,data,communication,and network topology)in FEL,and summarize the advantages in improving system efficiency,reducing latency,enhancing resource utilization,and enhancing robustness.In addition,we present the potential ability of joint optimization to enhance privacy preservation by reducing communication requirements,indirectly.This work not only provides theoretical support for resource management in federated learning(FL)systems,but also provides ideas for potential optimal deployment in multiple real-world scenarios.By thoroughly discussing the current challenges and future research directions,it also provides some important insights into multi-resource optimization in complex application environments.
基金supported in part by the Start-Up Grant-Nanyang Assistant Professorship Grant of Nanyang Technological Universitythe Agency for Science,Technology and Research(A*STAR)under Advanced Manufacturing and Engineering(AME)Young Individual Research under Grant(A2084c0156)+2 种基金the MTC Individual Research Grant(M22K2c0079)the ANR-NRF Joint Grant(NRF2021-NRF-ANR003 HM Science)the Ministry of Education(MOE)under the Tier 2 Grant(MOE-T2EP50222-0002)。
文摘While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present a novel robust reinforcement learning approach with safety guarantees to attain trustworthy decision-making for autonomous vehicles.The proposed technique ensures decision trustworthiness in terms of policy robustness and collision safety.Specifically,an adversary model is learned online to simulate the worst-case uncertainty by approximating the optimal adversarial perturbations on the observed states and environmental dynamics.In addition,an adversarial robust actor-critic algorithm is developed to enable the agent to learn robust policies against perturbations in observations and dynamics.Moreover,we devise a safety mask to guarantee the collision safety of the autonomous driving agent during both the training and testing processes using an interpretable knowledge model known as the Responsibility-Sensitive Safety Model.Finally,the proposed approach is evaluated through both simulations and experiments.These results indicate that the autonomous driving agent can make trustworthy decisions and drastically reduce the number of collisions through robust safety policies.
基金supported by the National Key Research,Development Program of China (2020AAA0103404)the Beijing Nova Program (20220484077)the National Natural Science Foundation of China (62073323)。
文摘Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professional sports analytics realm but also the academic AI research community. AI brings gamechanging approaches for soccer analytics where soccer has been a typical benchmark for AI research. The combination has been an emerging topic. In this paper, soccer match analytics are taken as a complete observation-orientation-decision-action(OODA) loop.In addition, as in AI frameworks such as that for reinforcement learning, interacting with a virtual environment enables an evolving model. Therefore, both soccer analytics in the real world and virtual domains are discussed. With the intersection of the OODA loop and the real-virtual domains, available soccer data, including event and tracking data, and diverse orientation and decisionmaking models for both real-world and virtual soccer matches are comprehensively reviewed. Finally, some promising directions in this interdisciplinary area are pointed out. It is claimed that paradigms for both professional sports analytics and AI research could be combined. Moreover, it is quite promising to bridge the gap between the real and virtual domains for soccer match analysis and decision-making.
基金The Deanship of Scientific Research at Hashemite University partially funds this workDeanship of Scientific Research at the Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FFR-2024-1580-08”.
文摘Cloud Datacenter Network(CDN)providers usually have the option to scale their network structures to allow for far more resource capacities,though such scaling options may come with exponential costs that contradict their utility objectives.Yet,besides the cost of the physical assets and network resources,such scaling may also imposemore loads on the electricity power grids to feed the added nodes with the required energy to run and cool,which comes with extra costs too.Thus,those CDNproviders who utilize their resources better can certainly afford their services at lower price-units when compared to others who simply choose the scaling solutions.Resource utilization is a quite challenging process;indeed,clients of CDNs usually tend to exaggerate their true resource requirements when they lease their resources.Service providers are committed to their clients with Service Level Agreements(SLAs).Therefore,any amendment to the resource allocations needs to be approved by the clients first.In this work,we propose deploying a Stackelberg leadership framework to formulate a negotiation game between the cloud service providers and their client tenants.Through this,the providers seek to retrieve those leased unused resources from their clients.Cooperation is not expected from the clients,and they may ask high price units to return their extra resources to the provider’s premises.Hence,to motivate cooperation in such a non-cooperative game,as an extension to theVickery auctions,we developed an incentive-compatible pricingmodel for the returned resources.Moreover,we also proposed building a behavior belief function that shapes the way of negotiation and compensation for each client.Compared to other benchmark models,the assessment results showthat our proposed models provide for timely negotiation schemes,allowing for better resource utilization rates,higher utilities,and grid-friend CDNs.
基金supported by the National Natural Science Foundation of China(NSFC)[grant numbers 62172377,61872205]the Shandong Provincial Natural Science Foundation[grant number ZR2019MF018]the Startup Research Foundation for Distinguished Scholars No.202112016.
文摘The cloud platform has limited defense resources to fully protect the edge servers used to process crowd sensing data in Internet of Things.To guarantee the network's overall security,we present a network defense resource allocation with multi-armed bandits to maximize the network's overall benefit.Firstly,we propose the method for dynamic setting of node defense resource thresholds to obtain the defender(attacker)benefit function of edge servers(nodes)and distribution.Secondly,we design a defense resource sharing mechanism for neighboring nodes to obtain the defense capability of nodes.Subsequently,we use the decomposability and Lipschitz conti-nuity of the defender's total expected utility to reduce the difference between the utility's discrete and continuous arms and analyze the difference theoretically.Finally,experimental results show that the method maximizes the defender's total expected utility and reduces the difference between the discrete and continuous arms of the utility.
基金This work was funded by the National Natural Science Foundation of China Nos.U22A2099,61966009,62006057the Graduate Innovation Program No.YCSW2022286.
文摘Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values or make ethical decisions,they may not meet the expectations of humans.Traditionally,an ethical decision-making framework is constructed by rule-based or statistical approaches.In this paper,we propose an ethical decision-making framework based on incremental ILP(Inductive Logic Programming),which can overcome the brittleness of rule-based approaches and little interpretability of statistical approaches.As the current incremental ILP makes it difficult to solve conflicts,we propose a novel ethical decision-making framework considering conflicts in this paper,which adopts our proposed incremental ILP system.The framework consists of two processes:the learning process and the deduction process.The first process records bottom clauses with their score functions and learns rules guided by the entailment and the score function.The second process obtains an ethical decision based on the rules.In an ethical scenario about chatbots for teenagers’mental health,we verify that our framework can learn ethical rules and make ethical decisions.Besides,we extract incremental ILP from the framework and compare it with the state-of-the-art ILP systems based on ASP(Answer Set Programming)focusing on conflict resolution.The results of comparisons show that our proposed system can generate better-quality rules than most other systems.
基金supported by the National Natural Science Foundation of China (No.72071150).
文摘Stroke is a chronic cerebrovascular disease that carries a high risk.Stroke risk assessment is of great significance in preventing,reversing and reducing the spread and the health hazards caused by stroke.Aiming to objectively predict and identify strokes,this paper proposes a new stroke risk assessment decision-making model named Logistic-AdaBoost(Logistic-AB)based on machine learning.First,the categorical boosting(CatBoost)method is used to perform feature selection for all features of stroke,and 8 main features are selected to form a new index evaluation system to predict the risk of stroke.Second,the borderline synthetic minority oversampling technique(SMOTE)algorithm is applied to transform the unbalanced stroke dataset into a balanced dataset.Finally,the stroke risk assessment decision-makingmodel Logistic-AB is constructed,and the overall prediction performance of this new model is evaluated by comparing it with ten other similar models.The comparison results show that the new model proposed in this paper performs better than the two single algorithms(logistic regression and AdaBoost)on the four indicators of recall,precision,F1 score,and accuracy,and the overall performance of the proposed model is better than that of common machine learning algorithms.The Logistic-AB model presented in this paper can more accurately predict patients’stroke risk.
基金supported by the foundation of National Key Laboratory of Electromagnetic Environment(Grant No.JCKY2020210C 614240304)Natural Science Foundation of ZheJiang province(LQY20F010001)+1 种基金the National Natural Science Foundation of China under grant numbers 82004499State Key Laboratory of Millimeter Waves under grant numbers K202012.
文摘The performance of massive MIMO systems relies heavily on the availability of Channel State Information at the Transmitter(CSIT).A large amount of work has been devoted to reducing the CSIT acquisition overhead at the pilot training and/or CsI feedback stage.In fact,the downlink communication generally includes three stages,i.e.,pilot training,CsI feedback,and data transmission.These three stages are mutually related and jointly determine the overall system performance.Unfortunately,there exist few studies on the reduction of csIT acquisition overhead from the global point of view.In this paper,we integrate the Minimum Mean Square Error(MMSE)channel estimation,Random Vector Quantization(RVQ)based limited feedback and Maximal Ratio Combining(MRC)precoding into a unified framework for investigating the resource allocation problem.In particular,we first approximate the covariance matrix of the quantization error with a simple expression and derive an analytical expression of the received Signal-to-Noise Ratio(SNR)based on the deterministic equivalence theory.Then the three performance metrics(the spectral efficiency,energy efficiency,and total energy consumption)oriented problems are formulated analytically.With practical system requirements,these three metrics can be collaboratively optimized.Finally,we propose an optimization solver to derive the optimal partition of channel coherence time.Experiment results verify the benefits of the proposed resource allocation schemes under three different scenarios and illustrate the tradeoff of resource allocation between three stages.
文摘Purpose–Material selection,driven by wide and often conflicting objectives,is an important,sometimes difficult problem in material engineering.In this context,multi-criteria decision-making(MCDM)methodologies are effective.An approach of MCDM is needed to cater to criteria of material assortment simultaneously.More firms are now concerned about increasing their productivity using mathematical tools.To occupy a gap in the previous literature this research recommends an integrated MCDM and mathematical Bi-objective model for the selection of material.In addition,by using the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS),the inherent ambiguities of decision-makers in paired evaluations are considered in this research.It goes on to construct a mathematical bi-objective model for determining the best item to purchase.Design/methodology/approach–The entropy perspective is implemented in this paper to evaluate the weight parameters,while the TOPSIS technique is used to determine the best and worst intermediate pipe materials for automotive exhaust system.The intermediate pipes are used to join the components of the exhaust systems.The materials usually used to manufacture intermediate pipe are SUS 436LM,SUS 430,SUS 304,SUS 436L,SUH 409 L,SUS 441 L and SUS 439L.These seven materials are evaluated based on tensile strength(TS),hardness(H),elongation(E),yield strength(YS)and cost(C).A hybrid methodology combining entropy-based criteria weighting,with the TOPSIS for alternative ranking,is pursued to identify the optimal design material for an engineered application in this paper.This study aims to help while filling the information gap in selecting the most suitable material for use in the exhaust intermediate pipes.After that,the authors searched for and considered eight materials and evaluated them on the following five criteria:(1)TS,(2)YS,(3)H,(4)E and(5)C.The first two criteria have been chosen because they can have a lot of influence on the behavior of the exhaust intermediate pipes,on their performance and on the cost.In this structure,the weights of the criteria are calculated objectively through the entropy method in order to have an unbiased assessment.This essentially measures the quantity of information each criterion contribution,indicating the relative importance of these criteria better.Subsequently,the materials were ranked using the TOPSIS method in terms of their relative performance by measuring each material from an ideal solution to determine the best alternative.The results show that SUS 309,SUS 432L and SUS 436 LM are the first three materials that the exhaust intermediate pipe optimal design should consider.Findings–The material matrix of the decision presented in Table 3 was normalized through Equation 5,as shown in Table 5,and the matrix was multiplied with weighting criteriaß_j.The obtained weighted normalized matrix V_ij is presented in Table 6.However,the ideal,worst and best value was ascertained by employing Equation 7.This study is based on the selection of material for the development of intermediate pipe using MCDM,and it involves four basic stages,i.e.method of translation criteria,screening process,method of ranking and search for methods.The selection was done through the TOPSIS method,and the criteria weight was obtained by the entropy method.The result showed that the top three materials are SUS 309,SUS 432L and SUS 436 LM,respectively.For the future work,it is suggested to select more alternatives and criteria.The comparison can also be done by using different MCDM techniques like and Choice Expressing Reality(ELECTRE),Decision-Making Trial and Evaluation Laboratory(DEMATEL)and Preference Ranking Organization Method for Enrichment Evaluation(PROMETHEE).Originality/value–The results provide important conclusions for material selection in this targeted application,verifying the employment of mutual entropy-TOPSIS methodology for a series of difficult engineering decisions in material engineering concepts that combine superior capacity with better performance as well as cost-efficiency in various engineering design.
基金supported by the Key Research and Development Project in Anhui Province of China(Grant No.202304a05020059)the Fundamental Research Funds for the Central Universities of China(Grant No.PA2023GDSK0055)the Project of Anhui Province Economic and Information Bureau(Grant No.JB20099).
文摘Users and edge servers are not fullymutually trusted inmobile edge computing(MEC),and hence blockchain can be introduced to provide trustableMEC.In blockchain-basedMEC,each edge server functions as a node in bothMEC and blockchain,processing users’tasks and then uploading the task related information to the blockchain.That is,each edge server runs both users’offloaded tasks and blockchain tasks simultaneously.Note that there is a trade-off between the resource allocation for MEC and blockchain tasks.Therefore,the allocation of the resources of edge servers to the blockchain and theMEC is crucial for the processing delay of blockchain-based MEC.Most of the existing research tackles the problem of resource allocation in either blockchain or MEC,which leads to unfavorable performance of the blockchain-based MEC system.In this paper,we study how to allocate the computing resources of edge servers to the MEC and blockchain tasks with the aimtominimize the total systemprocessing delay.For the problem,we propose a computing resource Allocation algorithmfor Blockchain-based MEC(ABM)which utilizes the Slater’s condition,Karush-Kuhn-Tucker(KKT)conditions,partial derivatives of the Lagrangian function and subgradient projection method to obtain the solution.Simulation results show that ABM converges and effectively reduces the processing delay of blockchain-based MEC.
基金jointly supported by the National Natural Science Foundation of China(42376222,U22A20581,and 42076069)Key Research and Development Program of Hainan Province(ZDYF2024GXJS002)China Geological Survey(DD20230402)。
文摘A detailed understanding of the distribution and potential of natural gas hydrate(NGHs)resources is crucial to fostering the industrialization of those resources in the South China Sea,where NGHs are abundant.In this study,this study analyzed the applicability of resource evaluation methods,including the volumetric,genesis,and analogy methods,and estimated NGHs resource potential in the South China Sea by using scientific resource evaluation methods based on the factors controlling the geological accumulation and the reservoir characteristics of NGHs.Furthermore,this study compared the evaluation results of NGHs resource evaluations in representative worldwise sea areas via rational analysis.The results of this study are as follows:(1)The gas hydrate accumulation in the South China Sea is characterized by multiple sources of gas supply,multi-channel migration,and extensive accumulation,which are significantly different from those of oil and gas and other unconventional resources.(2)The evaluation of gas hydrate resources in the South China Sea is a highly targeted,stratified,and multidisciplinary evaluation of geological resources under the framework of a multi-type gas hydrate resource evaluation system and focuses on the comprehensive utilization of multi-source heterogeneous data.(3)Global NGHs resources is n×10^(15)m^(3),while the NGHs resources in the South China Sea are estimated to be 10^(13)m^(3),which is comparable to the abundance of typical marine NGHs deposits in other parts of the world.In the South China Sea,the NGHs resources have a broad prospect and provide a substantial resource base for production tests and industrialization of NGHs.
基金supported in part by the National Natural Science Foundation of China under Grant 62172192,U20A20228,and 62171203in part by the Science and Technology Demonstration Project of Social Development of Jiangsu Province under Grant BE2019631。
文摘Currently,applications accessing remote computing resources through cloud data centers is the main mode of operation,but this mode of operation greatly increases communication latency and reduces overall quality of service(QoS)and quality of experience(QoE).Edge computing technology extends cloud service functionality to the edge of the mobile network,closer to the task execution end,and can effectivelymitigate the communication latency problem.However,the massive and heterogeneous nature of servers in edge computing systems brings new challenges to task scheduling and resource management,and the booming development of artificial neural networks provides us withmore powerfulmethods to alleviate this limitation.Therefore,in this paper,we proposed a time series forecasting model incorporating Conv1D,LSTM and GRU for edge computing device resource scheduling,trained and tested the forecasting model using a small self-built dataset,and achieved competitive experimental results.
基金supported by the National Key Research and Development Plan(No.2022YFB2902701)the key Natural Science Foundation of Shenzhen(No.JCYJ20220818102209020).
文摘The satellite-terrestrial networks possess the ability to transcend geographical constraints inherent in traditional communication networks,enabling global coverage and offering users ubiquitous computing power support,which is an important development direction of future communications.In this paper,we take into account a multi-scenario network model under the coverage of low earth orbit(LEO)satellite,which can provide computing resources to users in faraway areas to improve task processing efficiency.However,LEO satellites experience limitations in computing and communication resources and the channels are time-varying and complex,which makes the extraction of state information a daunting task.Therefore,we explore the dynamic resource management issue pertaining to joint computing,communication resource allocation and power control for multi-access edge computing(MEC).In order to tackle this formidable issue,we undertake the task of transforming the issue into a Markov decision process(MDP)problem and propose the self-attention based dynamic resource management(SABDRM)algorithm,which effectively extracts state information features to enhance the training process.Simulation results show that the proposed algorithm is capable of effectively reducing the long-term average delay and energy consumption of the tasks.
基金the Deanship of Scientific Research at Umm Al-Qura University(Grant Code:22UQU4310396DSR65).
文摘Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is also beneficial for three parametric data.By Pythagorean fuzzy sets,the difference is calculated only between two parameters(membership and non-membership).According to human thoughts,fuzzy data can be found in three parameters(membership uncertainty,and non-membership).So,to make a compromise decision,comparing Sq-LDFSs is essential.Existing measures of different fuzzy sets do,however,can have several flaws that can lead to counterintuitive results.For instance,they treat any increase or decrease in the membership degree as the same as the non-membership degree because the uncertainty does not change,even though each parameter has a different implication.In the Sq-LDFSs comparison,this research develops the differentialmeasure(DFM).Themain goal of the DFM is to cover the unfair arguments that come from treating different types of FSs opposing criteria equally.Due to their relative positions in the attribute space and the similarity of their membership and non-membership degrees,two Sq-LDFSs formthis preference connectionwhen the uncertainty remains same in both sets.According to the degree of superiority or inferiority,two Sq-LDFSs are shown as identical,equivalent,superior,or inferior over one another.The suggested DFM’s fundamental characteristics are provided.Based on the newly developed DFM,a unique approach tomultiple criterion group decision-making is offered.Our suggestedmethod verifies the novel way of calculating the expert weights for Sq-LDFSS as in PFSs.Our proposed technique in three parameters is applied to evaluate solid-state drives and choose the optimum photovoltaic cell in two applications by taking uncertainty parameter zero.The method’s applicability and validity shown by the findings are contrasted with those obtained using various other existing approaches.To assess its stability and usefulness,a sensitivity analysis is done.
基金supported in part by the National Key R&D Program of China under Grant 2020YFB1005900the National Natural Science Foundation of China under Grant 62001220+3 种基金the Jiangsu Provincial Key Research and Development Program under Grants BE2022068the Natural Science Foundation of Jiangsu Province under Grants BK20200440the Future Network Scientific Research Fund Project FNSRFP-2021-YB-03the Young Elite Scientist Sponsorship Program,China Association for Science and Technology.
文摘Collaborative edge computing is a promising direction to handle the computation intensive tasks in B5G wireless networks.However,edge computing servers(ECSs)from different operators may not trust each other,and thus the incentives for collaboration cannot be guaranteed.In this paper,we propose a consortium blockchain enabled collaborative edge computing framework,where users can offload computing tasks to ECSs from different operators.To minimize the total delay of users,we formulate a joint task offloading and resource optimization problem,under the constraint of the computing capability of each ECS.We apply the Tammer decomposition method and heuristic optimization algorithms to obtain the optimal solution.Finally,we propose a reputation based node selection approach to facilitate the consensus process,and also consider a completion time based primary node selection to avoid monopolization of certain edge node and enhance the security of the blockchain.Simulation results validate the effectiveness of the proposed algorithm,and the total delay can be reduced by up to 40%compared with the non-cooperative case.