Leather industry is an important light industry in China.Leather making requires a series of chemical treatment.Degreasing,unhairing and chrome tanning wastewaters are the main portions of tannery wastewater.Reclaimin...Leather industry is an important light industry in China.Leather making requires a series of chemical treatment.Degreasing,unhairing and chrome tanning wastewaters are the main portions of tannery wastewater.Reclaiming and reusing these wastewaters can eliminate 80% of COD,75% of BOD,95% of chromium and 93% of sulfuret,furthermore reduce environment impact,decrease treatment costs,save chemicals and water.Some application methods of wastewater reclamation and reuse for different operations were reported.The suitable reclamation and reuse technologies can enable leather making processes more rational,and realize the recovery and recycle of several chemicals in the tannery.Resourceful utilization of tannery wastewater should mate with renovating production technology,updating equipment,and must be guaranteed sufficiently by environmental protection measures.展开更多
Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery a...Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC.展开更多
Gypsum sludge,a hazardous waste generated by the non-ferrous smelting industry,presents a significant challenge for disposal and utilization.To investigate the feasibility of substituting gypsum sludge for limestone a...Gypsum sludge,a hazardous waste generated by the non-ferrous smelting industry,presents a significant challenge for disposal and utilization.To investigate the feasibility of substituting gypsum sludge for limestone as a flux for smelting,the effects of calcium sulfate(CaSO_(4))and smelting conditions on oxygen-rich smelting of lead concentrate were studied.The interaction between CaSO_(4)and sulfides facilitates the conversion of CaSO_(4)into CaO,which is crucial for slag formation.The order of the influence of sulfide minerals on the conversion of CaSO_(4)is pyrite>sphalerite>galena.When using gypsum sludge exclusively as the calcium source,under optimal conditions with a CaO/SiO_(2)mass ratio of 0.8,an FeO/SiO_(2)mass ratio of 1.2,a melting temperature of 1150℃,an oxygen flow rate of 1.3 L/min,the recovery rates of Pb and Zn in the lead-rich slag reached 85.01%and 95.69%,respectively,with a sulfur content of 2.65 wt%.The As content in the smelting slag obtained by reduction smelting was 0.02 wt%.Resource utilization of gypsum sludge in lead smelting is a feasible method.展开更多
Land space is precious resource and carrier of various economic activities.Ecosystem Product Value Realization and Cultural Tourism is new economic growth point for green and low-carbon development.It is necessary to ...Land space is precious resource and carrier of various economic activities.Ecosystem Product Value Realization and Cultural Tourism is new economic growth point for green and low-carbon development.It is necessary to study how to intensively and efficiently utilize ecological and cultural-tourism resources under"Three zones three lines for land use"(3Z3L),which is basic land space planning policy.However,there are few research and cases due to difficulties of interdisciplinary research.This article adopts the methods of policies research,graphic analysis,and visiting,to study efficient utilization of ecological and cultural-tourism resources.This study found that the development of land spaces of ecology,agriculture,and urban areas is 3D trend,multi-purpose resource utilization can be achieved by improving the utilization efficiency of 3D space and differentiating spatial utilization in different periods.Taking Guangzhou Cultural Park as an example,the research object has improved the efficiency of ecological and cultural-tourism resource utilization by its managements and technology,such as“house under the tree,tree inside the house”.However,there are shortcomings just as planning and protection policies with it.We proposed to optimize the spatial planning and regulations,and improve the protection of overlapping areas of 3Z3L by planning and regulations,improve the utilization efficiency of ecological and cultural-tourism space,meet the urban young people's multiple needs such as culture and ecology in 3D space,use new technologies to improve ecological services quality such as biological methods,strengthen the coordination of multiple management departments with the concept of nature based solutions,develop the“Reversed Transmission Effect”,keep the boundary of urban development strictly.展开更多
Latex wastewater is a kind of refractory organic wastewater containing high concentrations of organics and ammonia nitrogen.In this work,the combined process of forward osmosis(FO)and reverse osmosis(RO)was designed t...Latex wastewater is a kind of refractory organic wastewater containing high concentrations of organics and ammonia nitrogen.In this work,the combined process of forward osmosis(FO)and reverse osmosis(RO)was designed to treat the latex wastewater in the whole process,achieving the water recovery rate of 99%and basically no waste discharge after the catalytic oxidation process.The turbidity of the latex wastewater was decreased to below 1 NTU by microfiltration pretreatment,and then using MgCl_2 worked as the draw solution for FO process to treat the latex wastewater.Different operation conditions including adding acid or scale inhibitor as the pretreatment methods were conducted to improve the treatment performance of the combined process.After the treatment of the whole process,the concentration of COD was less than 20 mg·L^(-1),the concentration of NH_3-N was less than 10 mg·L^(-1),and the concentration of TP was less than 0.5 mg·L^(-1)for the treated latex wastewater.The water quality met standards of industrial water reuse after the complete analysis of the treated latex wastewater,meanwhile,useful substances of L-Quebrachitol(L-Q)were successfully extracted from the concentrated solution.Therefore,the combined process of FO and RO could realize the efficient treatment and reuse of latex wastewater,which provided with some important guidance on the industrial application.展开更多
With the rapid development of China's social economy and the acceleration of urbanization,a large quantity of production and domestic sewage is discharged into rivers and lakes,and the concentration of pollutants ...With the rapid development of China's social economy and the acceleration of urbanization,a large quantity of production and domestic sewage is discharged into rivers and lakes,and the concentration of pollutants leads to serious excessive heavy metals in sediment,which affects the ecological environment.In this paper,the treatment technology of heavy metal pollution in sediment and its resource utilization in building ceramics in China are systematically analyzed and summarized,in order to provide a reference for the treatment of sediment in rivers and lakes and the sustainable development of building ceramics industry.展开更多
[Objectives]To explore the relationship between rural industry revitalization and land resource utilization.[Methods]Starting from the connotation of rural industry revitalization and land resource utilization,this st...[Objectives]To explore the relationship between rural industry revitalization and land resource utilization.[Methods]Starting from the connotation of rural industry revitalization and land resource utilization,this study explores the relationship between rural industry revitalization and land resource utilization,Taking Ganning Town with typical mountain industry as the research area,this paper analyzed the relationship between rural industry revitalization and land resource utilization through a combination of field research and literature analysis,found out the existing problems and came up with pertinent recommendations.[Results](i)Rural industry revitalization is both mutually reinforcing and mutually restrictive.(ii)In this study,the land use types of Ganning Town were divided into nine categories,including farmland,garden land,forest land and grassland,and their industrial functions and development models were identified,and the corresponding framework of land resource utilization and rural industry revitalization in Ganning Town was constructed.(iii)In view of the problems existing in Ganning Town,this paper proposed to change the ideological concept and enhance understanding,improve the utilization rate of idle land and promote rural industry revitalization,and accelerate land consolidation and restoration,and promote sustainable development.[Conclusions]It is necessary to correctly understand the two-way role and dynamic change relationship between rural industry revitalization and land resource utilization,solve the problem from the perspective of development,adopt development strategies according to local conditions,and take the road of sustainable development.展开更多
To fully utilize secondary resources,it will inevitably generate a large amount of deinking sludge using waste paper as raw material for paper making.The sludge contains small fibers and dissolved substances of variou...To fully utilize secondary resources,it will inevitably generate a large amount of deinking sludge using waste paper as raw material for paper making.The sludge contains small fibers and dissolved substances of various chemicals.After adding flocculant and settling treatment,deinked sludge is formed.However,its organic matter content can reach a high level of 40%to 50%,and it can also be reused,effectively avoiding the harmful impact of papermaking sludge on the environment.展开更多
A substantial reduction in groundwater level,exacerbated by coal mining activities,is intensifying water scarcity in western China’s ecologically fragile coal mining areas.China’s national strategic goal of achievin...A substantial reduction in groundwater level,exacerbated by coal mining activities,is intensifying water scarcity in western China’s ecologically fragile coal mining areas.China’s national strategic goal of achieving a carbon peak and carbon neutrality has made eco-friendly mining that prioritizes the protection and efficient use of water resources essential.Based on the resource characteristics of mine water and heat hazards,an intensive coal-water-thermal collaborative co-mining paradigm for the duration of the mining process is proposed.An integrated system for the production,supply,and storage of mining companion resources is achieved through technologies such as roof water inrush prevention and control,hydrothermal quality improvement,and deep-injection geological storage.An active preventive and control system achieved by adjusting the mining technology and a passive system centered on multiobjective drainage and grouting treatment are suggested,in accordance with the original geological characteristics and dynamic process of water inrush.By implementing advanced multi-objective drainage,specifically designed to address the“skylight-type”water inrush mode in the Yulin mining area of Shaanxi Province,a substantial reduction of 50%in water drillings and inflow was achieved,leading to stabilized water conditions that effectively ensure subsequent safe coal mining.An integrated-energy complementary model that incorporates the clean production concept of heat utilization is also proposed.The findings indicate a potential saving of 8419 t of standard coal by using water and air heat as an alternative heating source for the Xiaojihan coalmine,resulting in an impressive energy conservation of 50.2%and a notable 24.2%reduction in carbon emissions.The ultra-deep sustained water injection of 100 m^(3)·h^(-1)in a single well would not rupture the formation or cause water leakage,and 7.87×10^(5)t of mine water could be effectively stored in the Liujiagou Formation,presenting a viable method for mine-water management in the Ordos Basin and providing insights for green and low-carbon mining.展开更多
With the extending scale of agricultural production,the treatment and utilization of waste have become increasingly serious environmental problem.Taking city garden and Zhongnan pasture in Pujiang Town of Minhang Dist...With the extending scale of agricultural production,the treatment and utilization of waste have become increasingly serious environmental problem.Taking city garden and Zhongnan pasture in Pujiang Town of Minhang District in Shanghai for example,according to the analysis on discharge characteristic of waste and balance of resources and energy utilization,mixed anaerobic digestion was chosen to dispose waste based on government guidance and feasibility analysis of project,and the combining disposal and resource utilization of waste were realized in two enterprises,providing reference for close cases.展开更多
Chronic hepatitis B virus(HBV)infection,which threatens global public health,is a major contributor to liver-related morbidity and mortality.Examinations for liver diseases related to chronic HBV infection-including l...Chronic hepatitis B virus(HBV)infection,which threatens global public health,is a major contributor to liver-related morbidity and mortality.Examinations for liver diseases related to chronic HBV infection-including laboratory tests,ultrasounds,computed tomography(CT),and liver biopsies-may take up medical resources,particularly since they overlap in most instances.Thus,there is an urgent need to establish an economical and effective diagnosis method in order to streamline the medical process for HBV-related disea ses.Using complex network models constructed based on clinical blood tests,we provide such a method by defining the novel measure of functional resilience to assess patients’liver conditions.By combining network models and dynamics,we discovered the pivotal items and their corresponding thresholds,which can guide further research on preventing disease deterioration in critical states of these diseases.The macro-averaged precision of our method,functional resilience,is84.74%,whereas the macro-averaged precision of physicians’experience without assistance from imaging or biopsy is 55.63%.From an economic perspective,our approach could save the equivalent of at least30 USD per visit for most Chinese patients and at least 400 USD per visit for most US patients,compared with general diagnostic methods.Globally,this will add to savings of at least 10.5 billion USD annually.Our method can comprehensively evaluate the condition of patients’livers and help avert the waste of medical resources during the diagnosis of liver disease by reducing excessive imaging exams.展开更多
Mineral carbonation is a promising CO_(2) sequestration strategy that can utilize industrial wastes to convert CO_(2) into high-value CaCO_(3).This review summarizes the advancements in CO_(2) mineralization using typ...Mineral carbonation is a promising CO_(2) sequestration strategy that can utilize industrial wastes to convert CO_(2) into high-value CaCO_(3).This review summarizes the advancements in CO_(2) mineralization using typical industrial wastes to prepare ultrafine CaCO_(3).This work surveys the mechanisms of CO_(2) mineralization using these wastes and its capacities to synthesize CaCO_(3),evaluates the effects of carbonation pathways and operating parameters on the preparation of CaCO_(3),analyzes the current industrial application status and economics of this technology.Due to the large amount of impurities in solid wastes,the purity of CaCO_(3) prepared by indirect methods is greater than that prepared by direct methods.Crystalline CaCO_(3) includes three polymorphs.The polymorph of CaCO_(3) synthesized by carbonation process is determined the combined effects of various factors.These parameters essentially impact the nucleation and growth of CaCO_(3) by altering the CO_(2) supersaturation in the reaction system and the surface energy of CaCO_(3) grains.Increasing the initial pH of the solution and the CO_(2)flow rate favors the formation of vaterite,but calcite is formed under excessively high pH.Vaterite formation is favored at lower temperatures and residence time.With increased temperature and prolonged residence time,it passes through aragonite metastable phase and eventually transforms into calcite.Moreover,polymorph modifiers can decrease the surface energy of CaCO_(3) grains,facilitating the synthesis of vaterite.However,the large-scale application of this technology still faces many problems,including high costs,high energy consumption,low calcium leaching rate,low carbonation efficiency,and low product yield.Therefore,it is necessary to investigate ways to accelerate carbonation,optimize operating parameters,develop cost-effective agents,and understand the kinetics of CaCO_(3) nucleation and crystallization to obtain products with specific crystal forms.Furthermore,more studies on life cycle assessment(LCA)should be conducted to fully confirm the feasibility of the developed technologies.展开更多
Cloud Datacenter Network(CDN)providers usually have the option to scale their network structures to allow for far more resource capacities,though such scaling options may come with exponential costs that contradict th...Cloud Datacenter Network(CDN)providers usually have the option to scale their network structures to allow for far more resource capacities,though such scaling options may come with exponential costs that contradict their utility objectives.Yet,besides the cost of the physical assets and network resources,such scaling may also imposemore loads on the electricity power grids to feed the added nodes with the required energy to run and cool,which comes with extra costs too.Thus,those CDNproviders who utilize their resources better can certainly afford their services at lower price-units when compared to others who simply choose the scaling solutions.Resource utilization is a quite challenging process;indeed,clients of CDNs usually tend to exaggerate their true resource requirements when they lease their resources.Service providers are committed to their clients with Service Level Agreements(SLAs).Therefore,any amendment to the resource allocations needs to be approved by the clients first.In this work,we propose deploying a Stackelberg leadership framework to formulate a negotiation game between the cloud service providers and their client tenants.Through this,the providers seek to retrieve those leased unused resources from their clients.Cooperation is not expected from the clients,and they may ask high price units to return their extra resources to the provider’s premises.Hence,to motivate cooperation in such a non-cooperative game,as an extension to theVickery auctions,we developed an incentive-compatible pricingmodel for the returned resources.Moreover,we also proposed building a behavior belief function that shapes the way of negotiation and compensation for each client.Compared to other benchmark models,the assessment results showthat our proposed models provide for timely negotiation schemes,allowing for better resource utilization rates,higher utilities,and grid-friend CDNs.展开更多
As cloud computing usage grows,cloud data centers play an increasingly important role.To maximize resource utilization,ensure service quality,and enhance system performance,it is crucial to allocate tasks and manage p...As cloud computing usage grows,cloud data centers play an increasingly important role.To maximize resource utilization,ensure service quality,and enhance system performance,it is crucial to allocate tasks and manage performance effectively.The purpose of this study is to provide an extensive analysis of task allocation and performance management techniques employed in cloud data centers.The aim is to systematically categorize and organize previous research by identifying the cloud computing methodologies,categories,and gaps.A literature review was conducted,which included the analysis of 463 task allocations and 480 performance management papers.The review revealed three task allocation research topics and seven performance management methods.Task allocation research areas are resource allocation,load-Balancing,and scheduling.Performance management includes monitoring and control,power and energy management,resource utilization optimization,quality of service management,fault management,virtual machine management,and network management.The study proposes new techniques to enhance cloud computing work allocation and performance management.Short-comings in each approach can guide future research.The research’s findings on cloud data center task allocation and performance management can assist academics,practitioners,and cloud service providers in optimizing their systems for dependability,cost-effectiveness,and scalability.Innovative methodologies can steer future research to fill gaps in the literature.展开更多
BACKGROUND Elective cholecystectomy(CCY)is recommended for patients with gallstone-related acute cholangitis(AC)following endoscopic decompression to prevent recurrent biliary events.However,the optimal timing and imp...BACKGROUND Elective cholecystectomy(CCY)is recommended for patients with gallstone-related acute cholangitis(AC)following endoscopic decompression to prevent recurrent biliary events.However,the optimal timing and implications of CCY remain unclear.AIM To examine the impact of same-admission CCY compared to interval CCY on patients with gallstone-related AC using the National Readmission Database(NRD).METHODS We queried the NRD to identify all gallstone-related AC hospitalizations in adult patients with and without the same admission CCY between 2016 and 2020.Our primary outcome was all-cause 30-d readmission rates,and secondary outcomes included in-hospital mortality,length of stay(LOS),and hospitalization cost.RESULTS Among the 124964 gallstone-related AC hospitalizations,only 14.67%underwent the same admission CCY.The all-cause 30-d readmissions in the same admission CCY group were almost half that of the non-CCY group(5.56%vs 11.50%).Patients in the same admission CCY group had a longer mean LOS and higher hospitalization costs attrib-utable to surgery.Although the most common reason for readmission was sepsis in both groups,the second most common reason was AC in the interval CCY group.CONCLUSION Our study suggests that patients with gallstone-related AC who do not undergo the same admission CCY have twice the risk of readmission compared to those who undergo CCY during the same admission.These readmis-sions can potentially be prevented by performing same-admission CCY in appropriate patients,which may reduce subsequent hospitalization costs secondary to readmissions.展开更多
BACKGROUND Metabolic dysfunction-associated steatotic liver disease(MASLD),formally known as nonalcoholic fatty liver disease,is the most common chronic liver disease in the United States.Patients with MASLD have been...BACKGROUND Metabolic dysfunction-associated steatotic liver disease(MASLD),formally known as nonalcoholic fatty liver disease,is the most common chronic liver disease in the United States.Patients with MASLD have been reported to be at a higher risk of developing severe coronavirus disease 2019(COVID-19)and death.However,most studies are single-center studies,and nationwide data in the AIM To study the influence of MASLD on COVID-19 hospitalizations during the initial phase of the pandemic.METHODS We retrospectively analyzed the 2020 National Inpatient Sample(NIS)database to identify primary COVID-19 hospitalizations based on an underlying diagnosis of MASLD.A matched comparison cohort of COVID-19 hospit-alizations without MASLD was identified from NIS after 1:N propensity score matching based on gender,race,and comorbidities,including hypertension,heart failure,diabetes,and cirrhosis.The primary outcomes included inpatient mortality,length of stay,and hospitalization costs.Secondary outcomes included the prevalence of systemic complications.RESULTS A total of 2210 hospitalizations with MASLD were matched to 2210 hospitalizations without MASLD,with a good comorbidity balance.Overall,there was a higher prevalence of severe disease with more intensive care unit admissions(9.5%vs 7.2%,P=0.007),mechanical ventilation(7.2%vs 5.7%,P=0.03),and septic shock(5.2%vs 2.7%,P<0.001)in the MASLD cohort than in the non-MASLD cohort.However,there was no difference in mortality(8.6%vs 10%,P=0.49),length of stay(5 d vs 5 d,P=0.25),and hospitalization costs(42081.5$vs 38614$,P=0.15)between the MASLD and non-MASLD cohorts.CONCLUSION The presence of MAFLD with or without liver cirrhosis was not associated with increased mortality in COVID-19 hospitalizations;however,there was an increased incidence of severe COVID-19 infection.This data(2020)predates the availability of COVID-19 vaccines,and many MASLD patients have since been vaccinated.It will be interesting to see if these trends are present in the subsequent years of the pandemic.展开更多
Damp-heat karst mountainous areas are unique areas in terms of socialeconomic development, resource endowment and eco-environment in China, where natural resources are abundant,unique and diverse. However, fragile eco...Damp-heat karst mountainous areas are unique areas in terms of socialeconomic development, resource endowment and eco-environment in China, where natural resources are abundant,unique and diverse. However, fragile eco-environment, undeveloped economy and culture, and conflict of human and environment should not be ignored. In the research, a framework of integration of resource-development and environment-protection in damp-heat karst was designed on basis of resource and environment integration, which was applied to Daxin County in Guangxi Province. Furthermore, some integration models were proposed, including integration of development of characteristic agricultural resources and protection of eco-environment, integration of development of manganese ore resources and protection of eco-environment, integration of development of tourism resources and protection of ecoenvironment and integration of development of clean energy and protection of eco-environment.展开更多
Yield gap analysis could provide management suggestions to increase crop yields,while the understandings of resource utilization efficiency could help judge the rationality of the management.Based on more than 110 pub...Yield gap analysis could provide management suggestions to increase crop yields,while the understandings of resource utilization efficiency could help judge the rationality of the management.Based on more than 110 published papers and data from Food and Agriculture Organization (FAO,www.fao.org/faostat) and the Global Yield Gap and Water Productivity Atlas (www.yieldgap.org),this study summarized the concept,quantitative method of yield gap,yield-limiting factors,and resource utilization efficiency of the three major food crops (wheat,maize and rice).Currently,global potential yields of wheat,maize and rice were 7.7,10.4 and 8.5 t ha^(–1),respectively.However,actual yields of wheat,maize and rice were just 4.1,5.5 and 4.0 t ha^(–1),respectively.Climate,nutrients,moisture,crop varieties,planting dates,and socioeconomic conditions are the most mentioned yield-limiting factors.In terms of resource utilization,nitrogen utilization,water utilization,and radiation utilization efficiencies are still not optimal,and this review has summarized the main improvement measures.The current research focuses on quantitative potential yield and yield gap,with a rough explanation of yield-limiting factors.Subsequent research should use remote sensing data to improve the accuracy of the regional scale and use machine learning to quantify the role of yield-limiting factors in yield gaps and the impact of change crop management on resource utilization efficiency,so as to propose reasonable and effective measures to close yield gaps.展开更多
Northwest China includes Xinjiang Ugyur Autonomous Region, Qinghai Province, Gansu Province, Ningxia Hui Autonomous Region and Shaanxi Province, covering 308×10^4km^2. It is located in the warm-temperate zone and...Northwest China includes Xinjiang Ugyur Autonomous Region, Qinghai Province, Gansu Province, Ningxia Hui Autonomous Region and Shaanxi Province, covering 308×10^4km^2. It is located in the warm-temperate zone and the climate is arid or semi-arid. Precipitation is very scarce but evaporation is extremely high. The climate is dry, the water resources are deficient, the ecoenvironment is fragile, and the distribution of water resources is uneven. In this region, precipitation is the only input, and evaporation is the only output in the inland rivers, and precipitation, surface water and groundwater change with each other for many times, which benefits the storage and utilization of water resources. The average precipitation in this region is 232 mm, the total precipitation amount is 7003×108m^3/a, the surface water resources are 1891×10^8m^3/a, the total natural groundwater resources are 1150×10^8m^3/a, the total available water resources are 438×10^8 m^3/a, and the total water resources are 1996×10^8m^3/a and per capita water resources are 2278 m^3/a. The water resources of the whole area are 5.94×10^4m^3/(a.km^2), being only one-fifth of the mean value in China. Now, the available water resources are 876×10^8m^3/a, among which groundwater is proximate 130×10^8m^3/a.展开更多
The utilization of steel slag has been a worldwide issue for a long time. Attention is increasingly being paid to the technological innovation and development of steel slag. Aiming at the development of environmentall...The utilization of steel slag has been a worldwide issue for a long time. Attention is increasingly being paid to the technological innovation and development of steel slag. Aiming at the development of environmentally friendly steel slag concrete materials and their use in a recyclable economy ,Baosteel has recently been conducting research on and using many new building materials, including steel slag powder concrete, steel slag pervious concrete, steel slag counter weight concrete and so on. In this way, steel slag has been turned from a kind of solid waste into a value-added material. The technology of steel slag utilization has been enriched and developed,while a new model of using Baosteel steel slag in a recyclable economy has also been explored and practised.展开更多
文摘Leather industry is an important light industry in China.Leather making requires a series of chemical treatment.Degreasing,unhairing and chrome tanning wastewaters are the main portions of tannery wastewater.Reclaiming and reusing these wastewaters can eliminate 80% of COD,75% of BOD,95% of chromium and 93% of sulfuret,furthermore reduce environment impact,decrease treatment costs,save chemicals and water.Some application methods of wastewater reclamation and reuse for different operations were reported.The suitable reclamation and reuse technologies can enable leather making processes more rational,and realize the recovery and recycle of several chemicals in the tannery.Resourceful utilization of tannery wastewater should mate with renovating production technology,updating equipment,and must be guaranteed sufficiently by environmental protection measures.
基金the National Natural Science Foundation of China(No.52374279)the Natural Science Foundation of Shaanxi Province(No.2023-YBGY-055).
文摘Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC.
基金Project(2020YFC1909203)supported by the National Key R&D Project of ChinaProjects(51974364,52074355,51904339)supported by the National Natural Science Foundation of China。
文摘Gypsum sludge,a hazardous waste generated by the non-ferrous smelting industry,presents a significant challenge for disposal and utilization.To investigate the feasibility of substituting gypsum sludge for limestone as a flux for smelting,the effects of calcium sulfate(CaSO_(4))and smelting conditions on oxygen-rich smelting of lead concentrate were studied.The interaction between CaSO_(4)and sulfides facilitates the conversion of CaSO_(4)into CaO,which is crucial for slag formation.The order of the influence of sulfide minerals on the conversion of CaSO_(4)is pyrite>sphalerite>galena.When using gypsum sludge exclusively as the calcium source,under optimal conditions with a CaO/SiO_(2)mass ratio of 0.8,an FeO/SiO_(2)mass ratio of 1.2,a melting temperature of 1150℃,an oxygen flow rate of 1.3 L/min,the recovery rates of Pb and Zn in the lead-rich slag reached 85.01%and 95.69%,respectively,with a sulfur content of 2.65 wt%.The As content in the smelting slag obtained by reduction smelting was 0.02 wt%.Resource utilization of gypsum sludge in lead smelting is a feasible method.
基金the Fund of Key Laboratory of Marine Environmental Survey Technology and Application,Ministry of Natural Resources(Grant No.MESTA-2022-D003)the Fund of Laboratory of Marine Ecological Conservation and Restoration,Ministry of Natural Resources/Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration(Grant No.EPR2023010).
文摘Land space is precious resource and carrier of various economic activities.Ecosystem Product Value Realization and Cultural Tourism is new economic growth point for green and low-carbon development.It is necessary to study how to intensively and efficiently utilize ecological and cultural-tourism resources under"Three zones three lines for land use"(3Z3L),which is basic land space planning policy.However,there are few research and cases due to difficulties of interdisciplinary research.This article adopts the methods of policies research,graphic analysis,and visiting,to study efficient utilization of ecological and cultural-tourism resources.This study found that the development of land spaces of ecology,agriculture,and urban areas is 3D trend,multi-purpose resource utilization can be achieved by improving the utilization efficiency of 3D space and differentiating spatial utilization in different periods.Taking Guangzhou Cultural Park as an example,the research object has improved the efficiency of ecological and cultural-tourism resource utilization by its managements and technology,such as“house under the tree,tree inside the house”.However,there are shortcomings just as planning and protection policies with it.We proposed to optimize the spatial planning and regulations,and improve the protection of overlapping areas of 3Z3L by planning and regulations,improve the utilization efficiency of ecological and cultural-tourism space,meet the urban young people's multiple needs such as culture and ecology in 3D space,use new technologies to improve ecological services quality such as biological methods,strengthen the coordination of multiple management departments with the concept of nature based solutions,develop the“Reversed Transmission Effect”,keep the boundary of urban development strictly.
基金supported by the National Natural Science Foundation of China (22125802 and 22108012)Natural Science Foundation of Beijing Municipality (2222017)Fundamental Research Funds for the Central Universities (BUCTRC-202109)。
文摘Latex wastewater is a kind of refractory organic wastewater containing high concentrations of organics and ammonia nitrogen.In this work,the combined process of forward osmosis(FO)and reverse osmosis(RO)was designed to treat the latex wastewater in the whole process,achieving the water recovery rate of 99%and basically no waste discharge after the catalytic oxidation process.The turbidity of the latex wastewater was decreased to below 1 NTU by microfiltration pretreatment,and then using MgCl_2 worked as the draw solution for FO process to treat the latex wastewater.Different operation conditions including adding acid or scale inhibitor as the pretreatment methods were conducted to improve the treatment performance of the combined process.After the treatment of the whole process,the concentration of COD was less than 20 mg·L^(-1),the concentration of NH_3-N was less than 10 mg·L^(-1),and the concentration of TP was less than 0.5 mg·L^(-1)for the treated latex wastewater.The water quality met standards of industrial water reuse after the complete analysis of the treated latex wastewater,meanwhile,useful substances of L-Quebrachitol(L-Q)were successfully extracted from the concentrated solution.Therefore,the combined process of FO and RO could realize the efficient treatment and reuse of latex wastewater,which provided with some important guidance on the industrial application.
基金Provincial Innovation and Entrepreneurship Training Program for College Students of Jiangxi Provincial Department of Education(S202210846039X)University-level Natural Science Project of Jiangxi University of Technology(ZR2010).
文摘With the rapid development of China's social economy and the acceleration of urbanization,a large quantity of production and domestic sewage is discharged into rivers and lakes,and the concentration of pollutants leads to serious excessive heavy metals in sediment,which affects the ecological environment.In this paper,the treatment technology of heavy metal pollution in sediment and its resource utilization in building ceramics in China are systematically analyzed and summarized,in order to provide a reference for the treatment of sediment in rivers and lakes and the sustainable development of building ceramics industry.
基金Supported by National Natural Science Foundation of China(41261018).
文摘[Objectives]To explore the relationship between rural industry revitalization and land resource utilization.[Methods]Starting from the connotation of rural industry revitalization and land resource utilization,this study explores the relationship between rural industry revitalization and land resource utilization,Taking Ganning Town with typical mountain industry as the research area,this paper analyzed the relationship between rural industry revitalization and land resource utilization through a combination of field research and literature analysis,found out the existing problems and came up with pertinent recommendations.[Results](i)Rural industry revitalization is both mutually reinforcing and mutually restrictive.(ii)In this study,the land use types of Ganning Town were divided into nine categories,including farmland,garden land,forest land and grassland,and their industrial functions and development models were identified,and the corresponding framework of land resource utilization and rural industry revitalization in Ganning Town was constructed.(iii)In view of the problems existing in Ganning Town,this paper proposed to change the ideological concept and enhance understanding,improve the utilization rate of idle land and promote rural industry revitalization,and accelerate land consolidation and restoration,and promote sustainable development.[Conclusions]It is necessary to correctly understand the two-way role and dynamic change relationship between rural industry revitalization and land resource utilization,solve the problem from the perspective of development,adopt development strategies according to local conditions,and take the road of sustainable development.
文摘To fully utilize secondary resources,it will inevitably generate a large amount of deinking sludge using waste paper as raw material for paper making.The sludge contains small fibers and dissolved substances of various chemicals.After adding flocculant and settling treatment,deinked sludge is formed.However,its organic matter content can reach a high level of 40%to 50%,and it can also be reused,effectively avoiding the harmful impact of papermaking sludge on the environment.
基金supported by the National Key Research and Development Program of China(2021YFC2902004)the National Natural Science Foundation of China(42072284,42027801,and 41877186).
文摘A substantial reduction in groundwater level,exacerbated by coal mining activities,is intensifying water scarcity in western China’s ecologically fragile coal mining areas.China’s national strategic goal of achieving a carbon peak and carbon neutrality has made eco-friendly mining that prioritizes the protection and efficient use of water resources essential.Based on the resource characteristics of mine water and heat hazards,an intensive coal-water-thermal collaborative co-mining paradigm for the duration of the mining process is proposed.An integrated system for the production,supply,and storage of mining companion resources is achieved through technologies such as roof water inrush prevention and control,hydrothermal quality improvement,and deep-injection geological storage.An active preventive and control system achieved by adjusting the mining technology and a passive system centered on multiobjective drainage and grouting treatment are suggested,in accordance with the original geological characteristics and dynamic process of water inrush.By implementing advanced multi-objective drainage,specifically designed to address the“skylight-type”water inrush mode in the Yulin mining area of Shaanxi Province,a substantial reduction of 50%in water drillings and inflow was achieved,leading to stabilized water conditions that effectively ensure subsequent safe coal mining.An integrated-energy complementary model that incorporates the clean production concept of heat utilization is also proposed.The findings indicate a potential saving of 8419 t of standard coal by using water and air heat as an alternative heating source for the Xiaojihan coalmine,resulting in an impressive energy conservation of 50.2%and a notable 24.2%reduction in carbon emissions.The ultra-deep sustained water injection of 100 m^(3)·h^(-1)in a single well would not rupture the formation or cause water leakage,and 7.87×10^(5)t of mine water could be effectively stored in the Liujiagou Formation,presenting a viable method for mine-water management in the Ordos Basin and providing insights for green and low-carbon mining.
基金Supported by Science and Technology Planning Project of Science Committee Science Committee(08DZ1980902)~~
文摘With the extending scale of agricultural production,the treatment and utilization of waste have become increasingly serious environmental problem.Taking city garden and Zhongnan pasture in Pujiang Town of Minhang District in Shanghai for example,according to the analysis on discharge characteristic of waste and balance of resources and energy utilization,mixed anaerobic digestion was chosen to dispose waste based on government guidance and feasibility analysis of project,and the combining disposal and resource utilization of waste were realized in two enterprises,providing reference for close cases.
基金National Natural Science Founda-tion of China(72231008,72171193,and 72071153).
文摘Chronic hepatitis B virus(HBV)infection,which threatens global public health,is a major contributor to liver-related morbidity and mortality.Examinations for liver diseases related to chronic HBV infection-including laboratory tests,ultrasounds,computed tomography(CT),and liver biopsies-may take up medical resources,particularly since they overlap in most instances.Thus,there is an urgent need to establish an economical and effective diagnosis method in order to streamline the medical process for HBV-related disea ses.Using complex network models constructed based on clinical blood tests,we provide such a method by defining the novel measure of functional resilience to assess patients’liver conditions.By combining network models and dynamics,we discovered the pivotal items and their corresponding thresholds,which can guide further research on preventing disease deterioration in critical states of these diseases.The macro-averaged precision of our method,functional resilience,is84.74%,whereas the macro-averaged precision of physicians’experience without assistance from imaging or biopsy is 55.63%.From an economic perspective,our approach could save the equivalent of at least30 USD per visit for most Chinese patients and at least 400 USD per visit for most US patients,compared with general diagnostic methods.Globally,this will add to savings of at least 10.5 billion USD annually.Our method can comprehensively evaluate the condition of patients’livers and help avert the waste of medical resources during the diagnosis of liver disease by reducing excessive imaging exams.
基金support was received the Science&Technology Foundation of RIPP(PR20230092,PR20230259)the National Natural Science Foundation of China(22278419)the Key Core Technology Research(Social Development)Foundation of Suzhou(2023ss06).
文摘Mineral carbonation is a promising CO_(2) sequestration strategy that can utilize industrial wastes to convert CO_(2) into high-value CaCO_(3).This review summarizes the advancements in CO_(2) mineralization using typical industrial wastes to prepare ultrafine CaCO_(3).This work surveys the mechanisms of CO_(2) mineralization using these wastes and its capacities to synthesize CaCO_(3),evaluates the effects of carbonation pathways and operating parameters on the preparation of CaCO_(3),analyzes the current industrial application status and economics of this technology.Due to the large amount of impurities in solid wastes,the purity of CaCO_(3) prepared by indirect methods is greater than that prepared by direct methods.Crystalline CaCO_(3) includes three polymorphs.The polymorph of CaCO_(3) synthesized by carbonation process is determined the combined effects of various factors.These parameters essentially impact the nucleation and growth of CaCO_(3) by altering the CO_(2) supersaturation in the reaction system and the surface energy of CaCO_(3) grains.Increasing the initial pH of the solution and the CO_(2)flow rate favors the formation of vaterite,but calcite is formed under excessively high pH.Vaterite formation is favored at lower temperatures and residence time.With increased temperature and prolonged residence time,it passes through aragonite metastable phase and eventually transforms into calcite.Moreover,polymorph modifiers can decrease the surface energy of CaCO_(3) grains,facilitating the synthesis of vaterite.However,the large-scale application of this technology still faces many problems,including high costs,high energy consumption,low calcium leaching rate,low carbonation efficiency,and low product yield.Therefore,it is necessary to investigate ways to accelerate carbonation,optimize operating parameters,develop cost-effective agents,and understand the kinetics of CaCO_(3) nucleation and crystallization to obtain products with specific crystal forms.Furthermore,more studies on life cycle assessment(LCA)should be conducted to fully confirm the feasibility of the developed technologies.
基金The Deanship of Scientific Research at Hashemite University partially funds this workDeanship of Scientific Research at the Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FFR-2024-1580-08”.
文摘Cloud Datacenter Network(CDN)providers usually have the option to scale their network structures to allow for far more resource capacities,though such scaling options may come with exponential costs that contradict their utility objectives.Yet,besides the cost of the physical assets and network resources,such scaling may also imposemore loads on the electricity power grids to feed the added nodes with the required energy to run and cool,which comes with extra costs too.Thus,those CDNproviders who utilize their resources better can certainly afford their services at lower price-units when compared to others who simply choose the scaling solutions.Resource utilization is a quite challenging process;indeed,clients of CDNs usually tend to exaggerate their true resource requirements when they lease their resources.Service providers are committed to their clients with Service Level Agreements(SLAs).Therefore,any amendment to the resource allocations needs to be approved by the clients first.In this work,we propose deploying a Stackelberg leadership framework to formulate a negotiation game between the cloud service providers and their client tenants.Through this,the providers seek to retrieve those leased unused resources from their clients.Cooperation is not expected from the clients,and they may ask high price units to return their extra resources to the provider’s premises.Hence,to motivate cooperation in such a non-cooperative game,as an extension to theVickery auctions,we developed an incentive-compatible pricingmodel for the returned resources.Moreover,we also proposed building a behavior belief function that shapes the way of negotiation and compensation for each client.Compared to other benchmark models,the assessment results showthat our proposed models provide for timely negotiation schemes,allowing for better resource utilization rates,higher utilities,and grid-friend CDNs.
基金supported by the Ministerio Espanol de Ciencia e Innovación under Project Number PID2020-115570GB-C22,MCIN/AEI/10.13039/501100011033by the Cátedra de Empresa Tecnología para las Personas(UGR-Fujitsu).
文摘As cloud computing usage grows,cloud data centers play an increasingly important role.To maximize resource utilization,ensure service quality,and enhance system performance,it is crucial to allocate tasks and manage performance effectively.The purpose of this study is to provide an extensive analysis of task allocation and performance management techniques employed in cloud data centers.The aim is to systematically categorize and organize previous research by identifying the cloud computing methodologies,categories,and gaps.A literature review was conducted,which included the analysis of 463 task allocations and 480 performance management papers.The review revealed three task allocation research topics and seven performance management methods.Task allocation research areas are resource allocation,load-Balancing,and scheduling.Performance management includes monitoring and control,power and energy management,resource utilization optimization,quality of service management,fault management,virtual machine management,and network management.The study proposes new techniques to enhance cloud computing work allocation and performance management.Short-comings in each approach can guide future research.The research’s findings on cloud data center task allocation and performance management can assist academics,practitioners,and cloud service providers in optimizing their systems for dependability,cost-effectiveness,and scalability.Innovative methodologies can steer future research to fill gaps in the literature.
文摘BACKGROUND Elective cholecystectomy(CCY)is recommended for patients with gallstone-related acute cholangitis(AC)following endoscopic decompression to prevent recurrent biliary events.However,the optimal timing and implications of CCY remain unclear.AIM To examine the impact of same-admission CCY compared to interval CCY on patients with gallstone-related AC using the National Readmission Database(NRD).METHODS We queried the NRD to identify all gallstone-related AC hospitalizations in adult patients with and without the same admission CCY between 2016 and 2020.Our primary outcome was all-cause 30-d readmission rates,and secondary outcomes included in-hospital mortality,length of stay(LOS),and hospitalization cost.RESULTS Among the 124964 gallstone-related AC hospitalizations,only 14.67%underwent the same admission CCY.The all-cause 30-d readmissions in the same admission CCY group were almost half that of the non-CCY group(5.56%vs 11.50%).Patients in the same admission CCY group had a longer mean LOS and higher hospitalization costs attrib-utable to surgery.Although the most common reason for readmission was sepsis in both groups,the second most common reason was AC in the interval CCY group.CONCLUSION Our study suggests that patients with gallstone-related AC who do not undergo the same admission CCY have twice the risk of readmission compared to those who undergo CCY during the same admission.These readmis-sions can potentially be prevented by performing same-admission CCY in appropriate patients,which may reduce subsequent hospitalization costs secondary to readmissions.
文摘BACKGROUND Metabolic dysfunction-associated steatotic liver disease(MASLD),formally known as nonalcoholic fatty liver disease,is the most common chronic liver disease in the United States.Patients with MASLD have been reported to be at a higher risk of developing severe coronavirus disease 2019(COVID-19)and death.However,most studies are single-center studies,and nationwide data in the AIM To study the influence of MASLD on COVID-19 hospitalizations during the initial phase of the pandemic.METHODS We retrospectively analyzed the 2020 National Inpatient Sample(NIS)database to identify primary COVID-19 hospitalizations based on an underlying diagnosis of MASLD.A matched comparison cohort of COVID-19 hospit-alizations without MASLD was identified from NIS after 1:N propensity score matching based on gender,race,and comorbidities,including hypertension,heart failure,diabetes,and cirrhosis.The primary outcomes included inpatient mortality,length of stay,and hospitalization costs.Secondary outcomes included the prevalence of systemic complications.RESULTS A total of 2210 hospitalizations with MASLD were matched to 2210 hospitalizations without MASLD,with a good comorbidity balance.Overall,there was a higher prevalence of severe disease with more intensive care unit admissions(9.5%vs 7.2%,P=0.007),mechanical ventilation(7.2%vs 5.7%,P=0.03),and septic shock(5.2%vs 2.7%,P<0.001)in the MASLD cohort than in the non-MASLD cohort.However,there was no difference in mortality(8.6%vs 10%,P=0.49),length of stay(5 d vs 5 d,P=0.25),and hospitalization costs(42081.5$vs 38614$,P=0.15)between the MASLD and non-MASLD cohorts.CONCLUSION The presence of MAFLD with or without liver cirrhosis was not associated with increased mortality in COVID-19 hospitalizations;however,there was an increased incidence of severe COVID-19 infection.This data(2020)predates the availability of COVID-19 vaccines,and many MASLD patients have since been vaccinated.It will be interesting to see if these trends are present in the subsequent years of the pandemic.
基金Supported by National Natural Science Foundation of China(40961004,40761027)Guangxi Natural Science Foundation(2011jjA50016)+1 种基金Guangxi Philosophy and Social Science Research Project of 11th Five-Year Plan(06FJY023)Key Laboratory Funds of Ministry of Education(B3G1110)~~
文摘Damp-heat karst mountainous areas are unique areas in terms of socialeconomic development, resource endowment and eco-environment in China, where natural resources are abundant,unique and diverse. However, fragile eco-environment, undeveloped economy and culture, and conflict of human and environment should not be ignored. In the research, a framework of integration of resource-development and environment-protection in damp-heat karst was designed on basis of resource and environment integration, which was applied to Daxin County in Guangxi Province. Furthermore, some integration models were proposed, including integration of development of characteristic agricultural resources and protection of eco-environment, integration of development of manganese ore resources and protection of eco-environment, integration of development of tourism resources and protection of ecoenvironment and integration of development of clean energy and protection of eco-environment.
基金supported by the National Key Research and Development Program of China(2016YFD0300100)the Innovation Program of Chinese Academy of Agricultural Sciencesthe Elite Youth Program of the Chinese Academy of Agricultural Science。
文摘Yield gap analysis could provide management suggestions to increase crop yields,while the understandings of resource utilization efficiency could help judge the rationality of the management.Based on more than 110 published papers and data from Food and Agriculture Organization (FAO,www.fao.org/faostat) and the Global Yield Gap and Water Productivity Atlas (www.yieldgap.org),this study summarized the concept,quantitative method of yield gap,yield-limiting factors,and resource utilization efficiency of the three major food crops (wheat,maize and rice).Currently,global potential yields of wheat,maize and rice were 7.7,10.4 and 8.5 t ha^(–1),respectively.However,actual yields of wheat,maize and rice were just 4.1,5.5 and 4.0 t ha^(–1),respectively.Climate,nutrients,moisture,crop varieties,planting dates,and socioeconomic conditions are the most mentioned yield-limiting factors.In terms of resource utilization,nitrogen utilization,water utilization,and radiation utilization efficiencies are still not optimal,and this review has summarized the main improvement measures.The current research focuses on quantitative potential yield and yield gap,with a rough explanation of yield-limiting factors.Subsequent research should use remote sensing data to improve the accuracy of the regional scale and use machine learning to quantify the role of yield-limiting factors in yield gaps and the impact of change crop management on resource utilization efficiency,so as to propose reasonable and effective measures to close yield gaps.
基金National Natural Science Foundation of China, No.40235053 No.40401012+1 种基金 AIACC, No.AS25 Lanzhou Jiaotong University Foundation
文摘Northwest China includes Xinjiang Ugyur Autonomous Region, Qinghai Province, Gansu Province, Ningxia Hui Autonomous Region and Shaanxi Province, covering 308×10^4km^2. It is located in the warm-temperate zone and the climate is arid or semi-arid. Precipitation is very scarce but evaporation is extremely high. The climate is dry, the water resources are deficient, the ecoenvironment is fragile, and the distribution of water resources is uneven. In this region, precipitation is the only input, and evaporation is the only output in the inland rivers, and precipitation, surface water and groundwater change with each other for many times, which benefits the storage and utilization of water resources. The average precipitation in this region is 232 mm, the total precipitation amount is 7003×108m^3/a, the surface water resources are 1891×10^8m^3/a, the total natural groundwater resources are 1150×10^8m^3/a, the total available water resources are 438×10^8 m^3/a, and the total water resources are 1996×10^8m^3/a and per capita water resources are 2278 m^3/a. The water resources of the whole area are 5.94×10^4m^3/(a.km^2), being only one-fifth of the mean value in China. Now, the available water resources are 876×10^8m^3/a, among which groundwater is proximate 130×10^8m^3/a.
文摘The utilization of steel slag has been a worldwide issue for a long time. Attention is increasingly being paid to the technological innovation and development of steel slag. Aiming at the development of environmentally friendly steel slag concrete materials and their use in a recyclable economy ,Baosteel has recently been conducting research on and using many new building materials, including steel slag powder concrete, steel slag pervious concrete, steel slag counter weight concrete and so on. In this way, steel slag has been turned from a kind of solid waste into a value-added material. The technology of steel slag utilization has been enriched and developed,while a new model of using Baosteel steel slag in a recyclable economy has also been explored and practised.