The metamorphosed sedimentary type of iron deposits(BIF) is the most important type of iron deposits in the world, and super-large iron ore clusters of this type include the Quadrilatero Ferrifero district and Caraj...The metamorphosed sedimentary type of iron deposits(BIF) is the most important type of iron deposits in the world, and super-large iron ore clusters of this type include the Quadrilatero Ferrifero district and Carajas in Brazil, Hamersley in Australia, Kursk in Russia, Central Province of India and Anshan-Benxi in China. Subordinated types of iron deposits are magmatic, volcanic-hosted and sedimentary ones. This paper briefly introduces the geological characteristics of major super-large iron ore clusters in the world. The proven reserves of iron ores in China are relatively abundant, but they are mainly low-grade ores. Moreover, a considerate part of iron ores are difficult to utilize for their difficult ore dressing, deep burial or other reasons. Iron ore deposits are relatively concentrated in 11 metallogenic provinces(belts), such as the Anshan-Benxi, eastern Hebei, Xichang-Central Yunnan Province and middle-lower reaches of Yangtze River. The main minerogenetic epoches vary widely from the Archean to Quaternary, and are mainly the Late Archean to Middle Proterozoic, Variscan, and Yanshanian periods. The main 7 genetic types of iron deposits in China are metamorphosed sedimentary type(BIF), magmatic type, volcanic-hosted type, skarn type, hydrothermal type, sedimentary type and weathered leaching type. The iron-rich ores occur predominantly in the skarn and marine volcanic-hosted iron deposits, locally in the metamorphosed sedimentary type(BIF) as hydrothermal reformation products. The theory of minerogenetic series of mineral deposits and minerogenic models has applied in investigation and prospecting of iron ore deposits. A combination of deep analyses of aeromagnetic anomalies and geomagnetic anomalies, with gravity anomalies are an effective method to seeking large and deep-buried iron deposits. China has a relatively great oresearching potential of iron ores, especially for metamorphosed sedimentary, skarn, and marine volcanic-hosted iron deposits. For the lower guarantee degree of iron and steel industry, China should give a trading and open the foreign mining markets.展开更多
Van Yen district,Yen Bai province belongs to the Red River zone,which is a promising area for graphite ore,however,the methodologies were applied to previous research,evaluation and forecast potential of graphite are ...Van Yen district,Yen Bai province belongs to the Red River zone,which is a promising area for graphite ore,however,the methodologies were applied to previous research,evaluation and forecast potential of graphite are still limited.Based on that reason,this paper introduces a method to forecast prospective zoning by using mathematical methods,remote sensing combined with GIS(geographic information system)technology.The results of the study are an important basis in research orientation,in mineral exploration and exploitation in a reasonable way in order to meet the demand of the graphite raw materials for domestic and industries abroad.展开更多
The geological anomaly unit method (GAUM) is a new way to delineate and evaluate ore finding targets in line with the “geological anomaly ore finding theory”. Comprehensive ore finding information from geological, g...The geological anomaly unit method (GAUM) is a new way to delineate and evaluate ore finding targets in line with the “geological anomaly ore finding theory”. Comprehensive ore finding information from geological, geochemical and geophysical data is used for quantitative measurement of the “ore forming geological anomaly unit” in this paper. The main procedures are shown as follows: (1) The geo anomalous events associated with gold mineralization are analyzed in Tongshi gold field; (2) The zonation in the concentrated heavy minerals and the stream sediment elements of ore forming geo anomaly are studied in detail; (3) The deep geological structural framework is deduced by means of the synthetic geological interpretation of gravity and magnetic information; (4) The ore controlling geo anomalies and ore anomalies are chosen as the variables of the favorable ore forming indexes that can be used for the quantitative delineation and evaluation of the potential ore forming regions.展开更多
According to grade-tonnage diagrams of nickel and zinc deposits, their critical grades are 0.4 % and 3. 4 %, respectively, and hence the former resources can be considered optimistic and the latter pessimistic. The gr...According to grade-tonnage diagrams of nickel and zinc deposits, their critical grades are 0.4 % and 3. 4 %, respectively, and hence the former resources can be considered optimistic and the latter pessimistic. The grade-tonnage diagram of gold deposits is convex downwards suggesting that the critical grade is 1 X 10-6 in the low-grade part. The ore value (OV)-tonnage diagram of all deposits In the world consists of three parts: high, middle and low vain f classes. The enrichment ratio (ER)-tonnage diagram of all deposits in the world ho consists of three parts: high, middle and low ratio classes.Nine quality categories defined by ER and OV are characterized by some keywords indicating deposit types as follows: category RH (high ER-high OV: 0. 7 %) by 'unconformity' and 'Mississippi Val-ley', category HM (high ER-middle: OV: 0.7 %) by 'vein', category ML (middle ER-low OV: 0 %) by 'sandstone', 'stockwork' and' dissemination', category LM by 'orthomagmatic',' laterite',komatiite and ' chemical', and category LL by 'porphyry', 'dissemination' and 'placer'. Category MM is not characterized by any keyword. If the commodities of a deposit are defined by both the enrichment ratio and the ore value, the defined commodities are relatively coincident for gold and nickel,but different for copper, silver and zinc, and greatly different for molybdenum and lead. Deposits containing lead and/or zinc are complimentary. If the commodity Ph+Zn is applied, most lead or zinc deposits are classified as Ph+Zu by both definitions. Accessory metals are commonly expected for deposits of kuroko-type zinc, epithermal silver, massive sulfide-type zinc and volcanogenic zinc, but uncommon for deposits of orthomagmatic chromium, chemically precipitated copper and sandstone-type uranium.展开更多
Iron ore processing for steel production is crucial to the development and economy of Mongolia. Regardless of having abundant natural resources and raw materials, Mongolia almost doesn’t produce final products. So fa...Iron ore processing for steel production is crucial to the development and economy of Mongolia. Regardless of having abundant natural resources and raw materials, Mongolia almost doesn’t produce final products. So far, most mining and mineral beneficiation plants export raw materials only subjected to beneficiation process. Out of more than 200 deposits in Mongolia, 91 deposits had been explored with different methods and stages, and estimated the resource of 33 reserves. Without processing the iron ore, it is impossible to use it for steelmaking due to its high sulfur and phosphorus impurities. Therefore, to study the processing of iron ore deposits in Mongolia, we did a preliminary investigation of iron ore deposits and took samples from the Tamir Gol deposit with high silica and phosphorus content that is difficult to process. Then, conducted mineral analysis and determined the grain structure and beneficiation characteristics of Tamir Gol iron deposit. .展开更多
A large volume of overburden and mine wastes is generated during the extraction and beneficiation of the low grade ores. The waste low grade manganiferous iron ore fine from southern part of India was studied for reco...A large volume of overburden and mine wastes is generated during the extraction and beneficiation of the low grade ores. The waste low grade manganiferous iron ore fine from southern part of India was studied for recovery of iron values. The chemical assay of the sample is 52.36% Fe, 4.75% Mn, 8.5% SiO2 and 2.82% Al2O3. The characterization study of the sample indicates the presence of microplaty hematite, goethite, pyrolusite, cryptomelane with minor amount of quartz and kaolinite. The beneficiation study of the sample does not respond to the conventional route of desliming the ground feed followed by gravity separation and magnetic separation. Therefore, an alternative technique of reduction roasting using a producer gas was attempted at different conditions. The characterization of roasted product reveals the phase transformation to magnetite and microplaty magnetite. The low intensity magnetic separation conducted with the roasted products generated at optimal condition shows that 70% concentrate having 64.5% Fe and 1.87% Mn could be produced. The high manganese in the concentrate works as an additive for making pellet with enhancement in pellet strength and drop in reducibility. Utilization of mines waste has significant impact on mineral resources and environmental hazard.展开更多
Kolchiktau deposit is located within the Central Kyzylkums in Navoiy region of Uzbekistan.The importance of study of hard-rock deposits is caused by numerous explorations of such deposits in Uzbekistan, which plays a ...Kolchiktau deposit is located within the Central Kyzylkums in Navoiy region of Uzbekistan.The importance of study of hard-rock deposits is caused by numerous explorations of such deposits in Uzbekistan, which plays a significant role in social-economic aspects of the country.Rational and safe exploration of such deposits requires the study of engineering -geological conditions of territory.The展开更多
According to the news release from the Department of Land and Resources of Xinjiang Uygur Autonomous Region,the West Kunlun Maerkansu Mn ore prospecting project financed by the Autonomous Region scored a major breakth...According to the news release from the Department of Land and Resources of Xinjiang Uygur Autonomous Region,the West Kunlun Maerkansu Mn ore prospecting project financed by the Autonomous Region scored a major breakthrough.Located in the Akto County。展开更多
The Ministry of Land and Resources formally promulgated‘Outline of the'Thirteenth Five Year Plan'for Land and Resources’on August14.The'Outline'pointed out to,reinforce prospecting and protection of ...The Ministry of Land and Resources formally promulgated‘Outline of the'Thirteenth Five Year Plan'for Land and Resources’on August14.The'Outline'pointed out to,reinforce prospecting and protection of key mineral resources;improve orefield reserve mechanism,strengthen reserve of key orefields for strategic minerals such as tungsten,rare earth。展开更多
Ludwigite is a kind of complex iron ore containing boron, iron, and magnesium, and it is the most promising boron resource in China. Selective reduction of iron oxide is the key step for the comprehensive utilization ...Ludwigite is a kind of complex iron ore containing boron, iron, and magnesium, and it is the most promising boron resource in China. Selective reduction of iron oxide is the key step for the comprehensive utilization of ludwigite. In the present work, the reduction mechanism of ludwigite was investigated. The thermogravimetry and differential scanning calorimetry analysis and isothermal reduction of ludwigite/coal composite pellet were performed. Ludwigite yielded a lower reduction starting temperature and a higher final reduction degree compared with the traditional iron concentrates. Higher specific surface area and more fine cracks might be the main reasons for the better reducibility of ludwigite. Reducing temperature highly affected the reaction fraction and microstructure of the reduced pellets, which are closely related to the separation degree of boron and iron. Increasing reducing temperature benefited the boron and iron magnetic separation. Optimum magnetic separation results could be obtained when the pellet was reduced at 1300°C. The separated boron-rich non-magnetic concentrate presented poor crystalline structure, and its extraction efficiency for boron reached 64.3%. The obtained experimental results can provide reference for the determination of the comprehensive utilization flow sheet of ludwigite.展开更多
Copper consumption increased very quickly in China in recent years,which could not be met by inland copper industry.In order to achieve a sustainable development of copper industry,an analysis of copper recycling in C...Copper consumption increased very quickly in China in recent years,which could not be met by inland copper industry.In order to achieve a sustainable development of copper industry,an analysis of copper recycling in China was necessary.For the life cycle of copper products a copper-flow diagram with time factor was worked out and the contemporary copper recycling in China was analyzed,from which the following data were obtained.The average life cycle of copper products was 30 years.From 1998 to 2002,the use ratio of copper scraps in copper production,the use ratio of copper scraps in copper manufacture,the materials self-support ratio in copper production,and the materials self-support ratio in copper manufacture were 26.50%,15.49%,48.05% and 59.41%,respectively.The materials self-support ratios in copper production and manufacture declined year by year in recent years on the whole,and the latter dropped more quickly.The average index of copper ore and copper scrap from 1998 to 2002 were 0.8475 t/t and 0.0736 t/t,respectively;and copper resource efficiency was 1.1855 t/t.Some efforts should be paid to reduce copper ores consumption and promote copper scraps regeneration.Copper scraps were mostly imported from foreign countries because of shortage in recent years in China.Here the reasons related to copper scraps deficiency were also demonstrated.But we can forecast:when copper production was in a slow rise or in a steady state in China,the deficiency of copper scraps may be mitigated;when copper production was in a steady state for a very long time,copper scraps may become relatively abundant.According to the status of copper industry in China,the raw materials of copper production and manufacture have to depend on oversea markets heavily in recent years,and at the same time,the copper scraps using proportion and efficiency in copper industry should be improved.展开更多
The Qinghai-Tibet Plateau(also referred to as the Plateau)has long received much attention from the community of geoscience due to its unique geographical location and rich mineral resources.This paper reviews the aer...The Qinghai-Tibet Plateau(also referred to as the Plateau)has long received much attention from the community of geoscience due to its unique geographical location and rich mineral resources.This paper reviews the aeromagnetic surveys in the Plateau in the past 60 years and summarizes relevant research achievements,which mainly include the followings.(1)The boundaries between the Plateau and its surrounding regions have been clarified.In detail,its western boundary is restricted by West Kunlun-Altyn Tagh arc-shaped magnetic anomaly zone forming due to the arc-shaped connection of the Altyn Tagh and Kangxiwa faults and its eastern boundary consists of the boundaries among different magnetic fields along the Longnan(Wudu)-Kangding Fault.Meanwhile,the fault on the northern margin of the Northern Qilian Mountains serves as its northern boundary.(2)The Plateau is mainly composed of four orogens that were stitched together,namely East Kunlun-Qilian,Hoh-Xil-Songpan,Chamdo-Southwestern Sanjiang(Nujiang,Lancang,and Jinsha rivers in southeastern China),and Gangdese-Himalaya orogens.(3)The basement of the Plateau is dominated by weakly magnetic Proterozoic metamorphic rocks and lacks strongly magnetic Archean crystalline basement of stable continents such as the Tarim and Sichuan blocks.Therefore,it exhibits the characteristics of unstable orogenic basement.(4)The Yarlung-Zangbo suture zone forming due to continent-continent collisions since the Cenozoic shows double aeromagnetic anomaly zones.Therefore,it can be inferred that the Yarlung-Zangbo suture zone formed from the Indian Plate subducting towards and colliding with the Eurasian Plate twice.(5)A huge negative aeromagnetic anomaly in nearly SN trending has been discovered in the middle part of the Plateau,indicating a giant deep thermal-tectonic zone.(6)A dual-layer magnetic structure has been revealed in the Plateau.It consists of shallow magnetic anomaly zones in nearly EW and NW trending and deep magnetic anomaly zones in nearly SN trending.They overlap vertically and cross horizontally,showing the flyover-type geological structure of the Plateau.(7)A group of NW-trending faults occur in eastern Tibet,which is intersected rather than connected by the nearly EW trending that develop in middle-west Tibet.(8)As for the central uplift zone that occurs through the Qiangtang Basin,its metamorphic basement tends to gradually descend from west to east,showing the form of steps.The Qiangtang Basin is divided into the northern and southern part by the central uplift zone in it.The basement in the Qiangtang Basin is deep in the north and west and shallow in the south and west.The basement in the northern Qiangtang Basin is deep and relatively stable and thus is more favorable for the generation and preservation of oil and gas.Up to now,19 favorable tectonic regions of oil and gas have been determined in the Qiangtang Basin.(9)A total of 21 prospecting areas of mineral resources have been delineated and thousands of ore-bearing(or mineralization)anomalies have been discovered.Additionally,the formation and uplift mechanism of the Plateau are briefly discussed in this paper.展开更多
This The mineral potential in Egypt is quite high. Almost all sorts of industrial minerals such as metallic and non-metallic commodities exist in commercial amounts. However, Egypt imports many of the mineral commodit...This The mineral potential in Egypt is quite high. Almost all sorts of industrial minerals such as metallic and non-metallic commodities exist in commercial amounts. However, Egypt imports many of the mineral commodities needed for the local mineral industries. The main reason for this is that the investors, either the governmental or the private sectors, refrain from investing into the mineral industry for prospecting, evaluation, and developing the mining and mineral processing technologies. This is because the return on investment in the mining industry is generally low and the pay back period is relatively long compared with easy-to-get money projects. Another reason is the disarray of the mining laws and regulations and lack of administrative capability to deal with domestic and international investors and solve the related problems. Also, lack of skilled personnel in the field of mining and mineral processing is an additional factor for the set back of the mining industry in Egypt. This is why the mining technology in Egypt is not very far from being primitive and extremely simple, with the exception of the underground mining of coal, North of Sinai, and Abu-Tartur phosphate mining, where fully automated long wall operations are designed. Also, the recent gold and tin-tantalum-niobium projects are being designed on modern surface mining and mineral processing technologies. The present review presents an overview of the most important metallic mineral commodities in Egypt, their geological background, reserves and production rates. A brief mention of the existing technologies for their exploitation is also highlighted.展开更多
this work focuses on one of the critical points of Earth's history when the Solar System passed through the most distant point of its galactic orbit. During this event, Earth may have suffered from maximum extension,...this work focuses on one of the critical points of Earth's history when the Solar System passed through the most distant point of its galactic orbit. During this event, Earth may have suffered from maximum extension, associated with its relative proximity to the Sun at that time, followed by long-term contraction related to its later distancing. This paper is based on generalized data on the Cretaceous evolution of the Earth as a whole and of East Asia in particular. The evidence suggests that major geological processes at this time may be interpreted as transitional changes in the state of Earth. A liquid nature of its core may have reacted to the gravitational and electromagnetic transformations. When the cosmic changes took place at 135-120 Ma, more turbulent flows in the outer core would have favoured the rise of voluminous magmatic plumes and associated fluid flows. These would substantially transform the mantle, crust, hydrosphere, biosphere and atmosphere. In particular, plume-related melting of overlying subducting slabs and lower continental crust could have initiated numerous adakitic melts that formed the East Asian Adakitic Province. These and associated juvenile events produced numerous metallic ore, coal, gas and oil deposits. The Cretaceous is one of the most significant resource-producing periods.展开更多
基金supported by the National Natural Science Foundation of China (grant No. 40773038the Program of High-level Geological Talents (201309)Youth Geological Talents (201112) of the China Geological Survey
文摘The metamorphosed sedimentary type of iron deposits(BIF) is the most important type of iron deposits in the world, and super-large iron ore clusters of this type include the Quadrilatero Ferrifero district and Carajas in Brazil, Hamersley in Australia, Kursk in Russia, Central Province of India and Anshan-Benxi in China. Subordinated types of iron deposits are magmatic, volcanic-hosted and sedimentary ones. This paper briefly introduces the geological characteristics of major super-large iron ore clusters in the world. The proven reserves of iron ores in China are relatively abundant, but they are mainly low-grade ores. Moreover, a considerate part of iron ores are difficult to utilize for their difficult ore dressing, deep burial or other reasons. Iron ore deposits are relatively concentrated in 11 metallogenic provinces(belts), such as the Anshan-Benxi, eastern Hebei, Xichang-Central Yunnan Province and middle-lower reaches of Yangtze River. The main minerogenetic epoches vary widely from the Archean to Quaternary, and are mainly the Late Archean to Middle Proterozoic, Variscan, and Yanshanian periods. The main 7 genetic types of iron deposits in China are metamorphosed sedimentary type(BIF), magmatic type, volcanic-hosted type, skarn type, hydrothermal type, sedimentary type and weathered leaching type. The iron-rich ores occur predominantly in the skarn and marine volcanic-hosted iron deposits, locally in the metamorphosed sedimentary type(BIF) as hydrothermal reformation products. The theory of minerogenetic series of mineral deposits and minerogenic models has applied in investigation and prospecting of iron ore deposits. A combination of deep analyses of aeromagnetic anomalies and geomagnetic anomalies, with gravity anomalies are an effective method to seeking large and deep-buried iron deposits. China has a relatively great oresearching potential of iron ores, especially for metamorphosed sedimentary, skarn, and marine volcanic-hosted iron deposits. For the lower guarantee degree of iron and steel industry, China should give a trading and open the foreign mining markets.
文摘Van Yen district,Yen Bai province belongs to the Red River zone,which is a promising area for graphite ore,however,the methodologies were applied to previous research,evaluation and forecast potential of graphite are still limited.Based on that reason,this paper introduces a method to forecast prospective zoning by using mathematical methods,remote sensing combined with GIS(geographic information system)technology.The results of the study are an important basis in research orientation,in mineral exploration and exploitation in a reasonable way in order to meet the demand of the graphite raw materials for domestic and industries abroad.
文摘The geological anomaly unit method (GAUM) is a new way to delineate and evaluate ore finding targets in line with the “geological anomaly ore finding theory”. Comprehensive ore finding information from geological, geochemical and geophysical data is used for quantitative measurement of the “ore forming geological anomaly unit” in this paper. The main procedures are shown as follows: (1) The geo anomalous events associated with gold mineralization are analyzed in Tongshi gold field; (2) The zonation in the concentrated heavy minerals and the stream sediment elements of ore forming geo anomaly are studied in detail; (3) The deep geological structural framework is deduced by means of the synthetic geological interpretation of gravity and magnetic information; (4) The ore controlling geo anomalies and ore anomalies are chosen as the variables of the favorable ore forming indexes that can be used for the quantitative delineation and evaluation of the potential ore forming regions.
基金the Grand-in-Aid for Scientific Research (No. 10041136) from Ministry of Education of Japan.
文摘According to grade-tonnage diagrams of nickel and zinc deposits, their critical grades are 0.4 % and 3. 4 %, respectively, and hence the former resources can be considered optimistic and the latter pessimistic. The grade-tonnage diagram of gold deposits is convex downwards suggesting that the critical grade is 1 X 10-6 in the low-grade part. The ore value (OV)-tonnage diagram of all deposits In the world consists of three parts: high, middle and low vain f classes. The enrichment ratio (ER)-tonnage diagram of all deposits in the world ho consists of three parts: high, middle and low ratio classes.Nine quality categories defined by ER and OV are characterized by some keywords indicating deposit types as follows: category RH (high ER-high OV: 0. 7 %) by 'unconformity' and 'Mississippi Val-ley', category HM (high ER-middle: OV: 0.7 %) by 'vein', category ML (middle ER-low OV: 0 %) by 'sandstone', 'stockwork' and' dissemination', category LM by 'orthomagmatic',' laterite',komatiite and ' chemical', and category LL by 'porphyry', 'dissemination' and 'placer'. Category MM is not characterized by any keyword. If the commodities of a deposit are defined by both the enrichment ratio and the ore value, the defined commodities are relatively coincident for gold and nickel,but different for copper, silver and zinc, and greatly different for molybdenum and lead. Deposits containing lead and/or zinc are complimentary. If the commodity Ph+Zn is applied, most lead or zinc deposits are classified as Ph+Zu by both definitions. Accessory metals are commonly expected for deposits of kuroko-type zinc, epithermal silver, massive sulfide-type zinc and volcanogenic zinc, but uncommon for deposits of orthomagmatic chromium, chemically precipitated copper and sandstone-type uranium.
文摘Iron ore processing for steel production is crucial to the development and economy of Mongolia. Regardless of having abundant natural resources and raw materials, Mongolia almost doesn’t produce final products. So far, most mining and mineral beneficiation plants export raw materials only subjected to beneficiation process. Out of more than 200 deposits in Mongolia, 91 deposits had been explored with different methods and stages, and estimated the resource of 33 reserves. Without processing the iron ore, it is impossible to use it for steelmaking due to its high sulfur and phosphorus impurities. Therefore, to study the processing of iron ore deposits in Mongolia, we did a preliminary investigation of iron ore deposits and took samples from the Tamir Gol deposit with high silica and phosphorus content that is difficult to process. Then, conducted mineral analysis and determined the grain structure and beneficiation characteristics of Tamir Gol iron deposit. .
文摘A large volume of overburden and mine wastes is generated during the extraction and beneficiation of the low grade ores. The waste low grade manganiferous iron ore fine from southern part of India was studied for recovery of iron values. The chemical assay of the sample is 52.36% Fe, 4.75% Mn, 8.5% SiO2 and 2.82% Al2O3. The characterization study of the sample indicates the presence of microplaty hematite, goethite, pyrolusite, cryptomelane with minor amount of quartz and kaolinite. The beneficiation study of the sample does not respond to the conventional route of desliming the ground feed followed by gravity separation and magnetic separation. Therefore, an alternative technique of reduction roasting using a producer gas was attempted at different conditions. The characterization of roasted product reveals the phase transformation to magnetite and microplaty magnetite. The low intensity magnetic separation conducted with the roasted products generated at optimal condition shows that 70% concentrate having 64.5% Fe and 1.87% Mn could be produced. The high manganese in the concentrate works as an additive for making pellet with enhancement in pellet strength and drop in reducibility. Utilization of mines waste has significant impact on mineral resources and environmental hazard.
文摘Kolchiktau deposit is located within the Central Kyzylkums in Navoiy region of Uzbekistan.The importance of study of hard-rock deposits is caused by numerous explorations of such deposits in Uzbekistan, which plays a significant role in social-economic aspects of the country.Rational and safe exploration of such deposits requires the study of engineering -geological conditions of territory.The
文摘According to the news release from the Department of Land and Resources of Xinjiang Uygur Autonomous Region,the West Kunlun Maerkansu Mn ore prospecting project financed by the Autonomous Region scored a major breakthrough.Located in the Akto County。
文摘The Ministry of Land and Resources formally promulgated‘Outline of the'Thirteenth Five Year Plan'for Land and Resources’on August14.The'Outline'pointed out to,reinforce prospecting and protection of key mineral resources;improve orefield reserve mechanism,strengthen reserve of key orefields for strategic minerals such as tungsten,rare earth。
基金financially supported by the China Postdoctoral Science Foundation(No.2018T110046)the National Natural Science Foundation of China(No.51274033)
文摘Ludwigite is a kind of complex iron ore containing boron, iron, and magnesium, and it is the most promising boron resource in China. Selective reduction of iron oxide is the key step for the comprehensive utilization of ludwigite. In the present work, the reduction mechanism of ludwigite was investigated. The thermogravimetry and differential scanning calorimetry analysis and isothermal reduction of ludwigite/coal composite pellet were performed. Ludwigite yielded a lower reduction starting temperature and a higher final reduction degree compared with the traditional iron concentrates. Higher specific surface area and more fine cracks might be the main reasons for the better reducibility of ludwigite. Reducing temperature highly affected the reaction fraction and microstructure of the reduced pellets, which are closely related to the separation degree of boron and iron. Increasing reducing temperature benefited the boron and iron magnetic separation. Optimum magnetic separation results could be obtained when the pellet was reduced at 1300°C. The separated boron-rich non-magnetic concentrate presented poor crystalline structure, and its extraction efficiency for boron reached 64.3%. The obtained experimental results can provide reference for the determination of the comprehensive utilization flow sheet of ludwigite.
基金Supported by Key Technologies R&D Programme(No.2003BA614A-02)
文摘Copper consumption increased very quickly in China in recent years,which could not be met by inland copper industry.In order to achieve a sustainable development of copper industry,an analysis of copper recycling in China was necessary.For the life cycle of copper products a copper-flow diagram with time factor was worked out and the contemporary copper recycling in China was analyzed,from which the following data were obtained.The average life cycle of copper products was 30 years.From 1998 to 2002,the use ratio of copper scraps in copper production,the use ratio of copper scraps in copper manufacture,the materials self-support ratio in copper production,and the materials self-support ratio in copper manufacture were 26.50%,15.49%,48.05% and 59.41%,respectively.The materials self-support ratios in copper production and manufacture declined year by year in recent years on the whole,and the latter dropped more quickly.The average index of copper ore and copper scrap from 1998 to 2002 were 0.8475 t/t and 0.0736 t/t,respectively;and copper resource efficiency was 1.1855 t/t.Some efforts should be paid to reduce copper ores consumption and promote copper scraps regeneration.Copper scraps were mostly imported from foreign countries because of shortage in recent years in China.Here the reasons related to copper scraps deficiency were also demonstrated.But we can forecast:when copper production was in a slow rise or in a steady state in China,the deficiency of copper scraps may be mitigated;when copper production was in a steady state for a very long time,copper scraps may become relatively abundant.According to the status of copper industry in China,the raw materials of copper production and manufacture have to depend on oversea markets heavily in recent years,and at the same time,the copper scraps using proportion and efficiency in copper industry should be improved.
基金funded by the National Key Research and Development Project(2017YFC0602200)China Geological Survey(DD20160065,DD20190025).
文摘The Qinghai-Tibet Plateau(also referred to as the Plateau)has long received much attention from the community of geoscience due to its unique geographical location and rich mineral resources.This paper reviews the aeromagnetic surveys in the Plateau in the past 60 years and summarizes relevant research achievements,which mainly include the followings.(1)The boundaries between the Plateau and its surrounding regions have been clarified.In detail,its western boundary is restricted by West Kunlun-Altyn Tagh arc-shaped magnetic anomaly zone forming due to the arc-shaped connection of the Altyn Tagh and Kangxiwa faults and its eastern boundary consists of the boundaries among different magnetic fields along the Longnan(Wudu)-Kangding Fault.Meanwhile,the fault on the northern margin of the Northern Qilian Mountains serves as its northern boundary.(2)The Plateau is mainly composed of four orogens that were stitched together,namely East Kunlun-Qilian,Hoh-Xil-Songpan,Chamdo-Southwestern Sanjiang(Nujiang,Lancang,and Jinsha rivers in southeastern China),and Gangdese-Himalaya orogens.(3)The basement of the Plateau is dominated by weakly magnetic Proterozoic metamorphic rocks and lacks strongly magnetic Archean crystalline basement of stable continents such as the Tarim and Sichuan blocks.Therefore,it exhibits the characteristics of unstable orogenic basement.(4)The Yarlung-Zangbo suture zone forming due to continent-continent collisions since the Cenozoic shows double aeromagnetic anomaly zones.Therefore,it can be inferred that the Yarlung-Zangbo suture zone formed from the Indian Plate subducting towards and colliding with the Eurasian Plate twice.(5)A huge negative aeromagnetic anomaly in nearly SN trending has been discovered in the middle part of the Plateau,indicating a giant deep thermal-tectonic zone.(6)A dual-layer magnetic structure has been revealed in the Plateau.It consists of shallow magnetic anomaly zones in nearly EW and NW trending and deep magnetic anomaly zones in nearly SN trending.They overlap vertically and cross horizontally,showing the flyover-type geological structure of the Plateau.(7)A group of NW-trending faults occur in eastern Tibet,which is intersected rather than connected by the nearly EW trending that develop in middle-west Tibet.(8)As for the central uplift zone that occurs through the Qiangtang Basin,its metamorphic basement tends to gradually descend from west to east,showing the form of steps.The Qiangtang Basin is divided into the northern and southern part by the central uplift zone in it.The basement in the Qiangtang Basin is deep in the north and west and shallow in the south and west.The basement in the northern Qiangtang Basin is deep and relatively stable and thus is more favorable for the generation and preservation of oil and gas.Up to now,19 favorable tectonic regions of oil and gas have been determined in the Qiangtang Basin.(9)A total of 21 prospecting areas of mineral resources have been delineated and thousands of ore-bearing(or mineralization)anomalies have been discovered.Additionally,the formation and uplift mechanism of the Plateau are briefly discussed in this paper.
文摘This The mineral potential in Egypt is quite high. Almost all sorts of industrial minerals such as metallic and non-metallic commodities exist in commercial amounts. However, Egypt imports many of the mineral commodities needed for the local mineral industries. The main reason for this is that the investors, either the governmental or the private sectors, refrain from investing into the mineral industry for prospecting, evaluation, and developing the mining and mineral processing technologies. This is because the return on investment in the mining industry is generally low and the pay back period is relatively long compared with easy-to-get money projects. Another reason is the disarray of the mining laws and regulations and lack of administrative capability to deal with domestic and international investors and solve the related problems. Also, lack of skilled personnel in the field of mining and mineral processing is an additional factor for the set back of the mining industry in Egypt. This is why the mining technology in Egypt is not very far from being primitive and extremely simple, with the exception of the underground mining of coal, North of Sinai, and Abu-Tartur phosphate mining, where fully automated long wall operations are designed. Also, the recent gold and tin-tantalum-niobium projects are being designed on modern surface mining and mineral processing technologies. The present review presents an overview of the most important metallic mineral commodities in Egypt, their geological background, reserves and production rates. A brief mention of the existing technologies for their exploitation is also highlighted.
基金supported by the National Natural Science Foundation of China(No.41420104001)the ‘111’ Project(No.B17042)
文摘this work focuses on one of the critical points of Earth's history when the Solar System passed through the most distant point of its galactic orbit. During this event, Earth may have suffered from maximum extension, associated with its relative proximity to the Sun at that time, followed by long-term contraction related to its later distancing. This paper is based on generalized data on the Cretaceous evolution of the Earth as a whole and of East Asia in particular. The evidence suggests that major geological processes at this time may be interpreted as transitional changes in the state of Earth. A liquid nature of its core may have reacted to the gravitational and electromagnetic transformations. When the cosmic changes took place at 135-120 Ma, more turbulent flows in the outer core would have favoured the rise of voluminous magmatic plumes and associated fluid flows. These would substantially transform the mantle, crust, hydrosphere, biosphere and atmosphere. In particular, plume-related melting of overlying subducting slabs and lower continental crust could have initiated numerous adakitic melts that formed the East Asian Adakitic Province. These and associated juvenile events produced numerous metallic ore, coal, gas and oil deposits. The Cretaceous is one of the most significant resource-producing periods.