期刊文献+
共找到486篇文章
< 1 2 25 >
每页显示 20 50 100
Estimating Potential Nitrogen Mineralisation Using the Solvita Soil Respiration System
1
作者 Richard L. Haney Elizabeth B. Haney 《Open Journal of Soil Science》 2015年第12期319-323,共5页
Nitrogen (N) mineralisation contributes considerably to crop growth in fertilized and unfertilized fields. It is useful to be able to assess potential N mineralisation to increase fertilizer application efficiency, pr... Nitrogen (N) mineralisation contributes considerably to crop growth in fertilized and unfertilized fields. It is useful to be able to assess potential N mineralisation to increase fertilizer application efficiency, prevent excessive N runoff, and improve environmental system models. The microbes present in soil mineralize N based on many factors, including soil temperature and moisture, tillage, and levels of organic C and N. The measurement of soil’s ability to mineralize N is considered a good indicator of soil quality. Many methods have been developed to estimate N mineralisation in the laboratory and field. The 7-day anaerobic N mineralisation method developed in the 1960’s is considered reliable and is often used to compare new N-mineralisation testing methods. This study examines the use of soil CO2 evolution as determined using the Solvita Soil Respiration System (Solvita) for estimating N mineralisation by comparing it directly to the anaerobic N mineralisation test. Measured CO2 using Solvita was strongly correlated with anaerobic N mineralisation (r2 = 0.82). Results indicate that the Solvita Soil Respiration System can be used to rapidly assess soil respiration and relative N mineralisation potential in any given soil and is considerably faster and easier to perform in a laboratory setting than the anaerobic N mineralisation test. 展开更多
关键词 ANAEROBIC N NITROGEN Mineralisation SOIL respiration
下载PDF
Spatiotemporal Variability and Environmental Controls of Temperature Sensitivity of Ecosystem Respiration across the Tibetan Plateau
2
作者 Danrui SHENG Xianhong MENG +8 位作者 Shaoying WANG Zhaoguo LI Lunyu SHANG Hao CHEN Lin ZHAO Mingshan DENG Hanlin NIU Pengfei XU Xiaohu WEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第9期1821-1842,共22页
Warming-induced carbon loss via ecosystem respiration(R_(e))is probably intensifying in the alpine grassland ecosystem of the Tibetan Plateau owing to more accelerated warming and the higher temperature sensitivity of... Warming-induced carbon loss via ecosystem respiration(R_(e))is probably intensifying in the alpine grassland ecosystem of the Tibetan Plateau owing to more accelerated warming and the higher temperature sensitivity of R_(e)(Q_(10)).However,little is known about the patterns and controlling factors of Q_(10)on the plateau,impeding the comprehension of the intensity of terrestrial carbon-climate feedbacks for these sensitive and vulnerable ecosystems.Here,we synthesized and analyzed multiyear observations from 14 sites to systematically compare the spatiotemporal variations of Q_(10)values in diverse climate zones and ecosystems,and further explore the relationships between Q_(10)and environmental factors.Moreover,structural equation modeling was utilized to identify the direct and indirect factors predicting Q_(10)values during the annual,growing,and non-growing seasons.The results indicated that the estimated Q_(10)values were strongly dependent on temperature,generally,with the average Q_(10)during different time periods increasing with air temperature and soil temperature at different measurement depths(5 cm,10 cm,20 cm).The Q_(10)values differentiated among ecosystems and climatic zones,with warming-induced Q_(10)declines being stronger in colder regions than elsewhere based on spatial patterns.NDVI was the most cardinal factor in predicting annual Q_(10)values,significantly and positively correlated with Q_(10).Soil temperature(Ts)was identified as the other powerful predictor for Q_(10),and the negative Q_(10)-Ts relationship demonstrates a larger terrestrial carbon loss potentiality in colder than in warmer regions in response to global warming.Note that the interpretations of the effect of soil moisture on Q_(10)were complicated,reflected in a significant positive relationship between Q_(10)and soil moisture during the growing season and a strong quadratic correlation between the two during the annual and non-growing season.These findings are conducive to improving our understanding of alpine grassland ecosystem carbon-climate feedbacks under warming climates. 展开更多
关键词 carbon cycle eddy covariance measurements ecosystem respiration Q_(10)value Tibetan Plateau climate change
下载PDF
Determination of respiration, gross nitrification and denitrification in soil profile using BaPS system 被引量:14
3
作者 CHEN Shu-tao HUANG Yao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第5期937-943,共7页
A facility of BaPS (Barometric Process Separation) was used to determine soil respiration, gross nitrification and denitrification in a winter wheat field with depths of 0-7, 7--14 and 14-21 cm. N2O production was d... A facility of BaPS (Barometric Process Separation) was used to determine soil respiration, gross nitrification and denitrification in a winter wheat field with depths of 0-7, 7--14 and 14-21 cm. N2O production was determined by a gas chromatograph. Crop root mass and relevant soil parameters were measured. Results showed that soil respiration and gross nitrification decreased with the increase of soil depth, while denitrification did not change significantly. In comparison with no-plowing plot, soil respiration increased significantly in plowing plot, especially in the surface soil of 0-7 cm, while gross nitrification and denitrification rates were not affected by plowing. Cropping practice in previous season was found to affect soil gross nitrification in the following wheat-growing season. Higher gross nitrification rate occurred in the filed plot with preceding crop of rice compared with that of maize for all the three depths of 0-7, 7-14 and 14-21 cm. A further investigation indicated that the nitrification for all the cases accounted for about 76% of the total nitrogen transformation processes of nitrification and denitrification and the N2O production correlated with nitrification significantly, suggesting that nitrification is a key process of soil N2O production in the wheat field. In addition, the variations of soil respiration and gross nitrification were exponentially dependent on root mass (p〈0.00l). 展开更多
关键词 soil respiration gross nitrification DENITRIFICATION Barometric Process Separation (BaPS)
下载PDF
Spatio-Temporal Effect on Soil Respiration in Fine-Scale Patches in a Desert Ecosystem 被引量:5
4
作者 S. PEN-MOURATOV M. RAKHIMBAEV Y. STEINBERGER 《Pedosphere》 SCIE CAS CSCD 2006年第1期1-9,共9页
Soil organisms in terrestrial systems are unevenly distributed in time and space, and often aggregated. Spatiotemporal patchiness in the soil environment is thought to be crucial for the maintenance of soil biodiversi... Soil organisms in terrestrial systems are unevenly distributed in time and space, and often aggregated. Spatiotemporal patchiness in the soil environment is thought to be crucial for the maintenance of soil biodiversity, providing diverse microhabitats tightly interweaving with resource partitioning. Determination of a "scale unit" to help understand ecological processes has become one of the important and most debatable problems in recent years. A fieldwork was carried out in the northern Negev Desert highland, Israel to determine the influence of fine-scale landscape patch moisture heterogeneity on biogeochemical variables and microbial activity linkage in a desert ecosystem. The results showed that the spatio-temporal patchiness of soil moisture to which we attribute influential properties, was found to become more heterogenic with the decrease in soil moisture availability (from 8.2 to 0.4 g kg^-1) toward the hot, dry seasons, with coefficient of variation (CV) change amounting to 66.9%. Spatio-temporal distribution of organic matter (OM) and total soluble nitrogen (TSN) was found to be relatively uniformly distributed throughout the wet seasons (winter and spring), with increase of relatively high heterogeneity toward the dry seasons (from 0.25% to 2.17% for OM, and from 0 to 10.2 mg kg^-1 for TSN) with CV of 47.4% and 99.7% for OM and TSN, respectively. Different spatio-temporal landscape patterns were obtained for Ca (CV = 44.6%), K (CV = 34.4%), and Na (CV = 92%) ions throughout the study period. CO2 evolution (CV = 48.6%) was found to be of lower heterogeneity (varying between 2 and 39 g CO2-C g^-1 dry soil h^-1) in the moist seasons, e.g., winter and spring, with lower values of respiration coupled with high heterogeneity of Na^+ and low levels of TSN and organic matter content, and with more homogeneity in the dry seasons (varying between 1 and 50 g CO2-C g^-1 dry soil h^-1). Our results elucidate the heterogeneity and complexity of desert system habitats affecting soil biota activity. 展开更多
关键词 DESERT microbial respiration PATCHINESS small-scale habitat soil
下载PDF
Notes on the forest soil respiration measurement by a Li-6400 system 被引量:4
5
作者 WANGHui-Mei ZUYuan-Gang +1 位作者 WANGWen-Jie KoikeTakayoshi 《Journal of Forestry Research》 SCIE CAS CSCD 2005年第2期132-136,共5页
The correct method used in forest soil respiration measurement by Li-6400 is a premise of data quality control. According to the study in a larch plantation, collars should be inserted at 12 hours in advance to effici... The correct method used in forest soil respiration measurement by Li-6400 is a premise of data quality control. According to the study in a larch plantation, collars should be inserted at 12 hours in advance to efficiently reduce the influence of CO2 spring-out.Moreover, collar insertion depth substantially affected soil respiration measurement, i.e. when collar was shallowly inserted into soil,transversal gas diffusion and the CO2 re-spring-out caused by unstable collars in the measurement could lead to overestimating soil respiration rate; however, when collar was deeply inserted into soil, root respiration decline caused by root-cut and the most active respiratory of the surface soil separated by the inserted collars could lead to underestimating soil respiration rate. Furthermore, an error less than 5% could be guaranteed in typical sunny day if the target [CO2] was set to the mean value of ambient [CO2] in most time of the day, but it should be carefully set in early morning and late afternoon according to changing ambient [CO2]. This protocol of measurement is useful in real measurement. 展开更多
关键词 li-6400 soil respiration collar insertion depth CO_2 spring-out effect gas transversal diffusion factory parameter selection
下载PDF
Effects of Intercropping and Shading Systems on Tea Photosynthesis and Respiration 被引量:5
6
作者 赵甜甜 刘顺航 +2 位作者 严生积 李勇 胡琴芬 《Agricultural Science & Technology》 CAS 2016年第10期2225-2227,共3页
[Objective] The aim was to provide references for constructing compound ecological tea gardens. [Method] In an ecological adult-tea garden, teas shaded by Prunus cerasoides, Prunus L., and Litsea pungens were selected... [Objective] The aim was to provide references for constructing compound ecological tea gardens. [Method] In an ecological adult-tea garden, teas shaded by Prunus cerasoides, Prunus L., and Litsea pungens were selected and the teas without shades were taken as a control in order to explore effects of tree shading on photosynthesis, respiration and net photosynthetic intensities. [Result] In a growth cycle of one year, for teas shaded by Prunus cerasoides, Prunus L., and Litsea pungens, respiration intensity was significantly higher than that of the control; net photosynthetic intensity was extremely significant higher; photosynthesis intensity showed none rules. Both of net photosynthetic rate and intensity kept higher in winter of shaded teas. [Conclusion] It is of significance for high-yielding and high-quality teas to reduce respiration consumption and coordinate between photosynthesis and respiration given that tea grows well. 展开更多
关键词 Tea tree INTERCROPPING SHADING Photosynthetic intensity respiration intensity Net photosynthetic rate
下载PDF
Effects of converting natural grasslands into planted grasslands on ecosystem respiration: a case study in Inner Mongolia, China 被引量:2
7
作者 ZHANG Meng LI Xiaobing +3 位作者 WANG Hong DENG Fei LI Xu MI Xue 《Journal of Arid Land》 SCIE CSCD 2017年第1期38-50,共13页
With increasingly intensifying degradation of natural grasslands and rapidly increasing demand of high quality forages, natural grasslands in China have been converted into planted grasslands at an unprecedented rate ... With increasingly intensifying degradation of natural grasslands and rapidly increasing demand of high quality forages, natural grasslands in China have been converted into planted grasslands at an unprecedented rate and the magnitude of the conversion in Inner Mongolia is among the national highest where the areal extent of planted grasslands ranks the second in China. Such land-use changes(i.e., converting natural grasslands into planted grasslands) can significantly affect carbon stocks and carbon emissions in grassland ecosystems. In this study, we analyzed the effects of converting natural grasslands into planted grasslands(including Medicago sativa, Elymus cylindricus, and M. sativa+E. cylindricus) on ecosystem respiration(F(eco)) in Inner Mongolia of China. Diurnal F(eco) and its components(i.e., total soil respiration(F(ts)), soil heterotrophic respiration(F(sh)) and vegetation autotrophic respiration(F(va))) were measured in 2012(27 July to 5 August) and 2013(18 July to 25 July) in the natural and planted grasslands. Meteorological data, aboveground vegetation data and soil data were simultaneously collected to analyze the relationships between respiration fluxes and environmental factors in those grasslands. In 2012, the daily mean F(eco) in the M. sativa grassland was higher than that in the natural grassland, and the daily mean F(va) was higher in all planted grasslands(i.e., M. sativa, E. cylindricus, and M. sativa+E. cylindricus) than in the natural grassland. In contrast, the daily mean F(ts) and F(sh) were lower in all planted grasslands than in the natural grassland. In 2013, the daily mean F(eco), F(ts) and F(va) in all planted grasslands were higher than those in the natural grassland, and the daily mean F(sh) in the M. sativa+E. cylindricus grassland was higher than that in the natural grassland. The two-year experimental results suggested that the conversion of natural grasslands into planted grasslands can generally increase the F(eco) and the increase in F(eco) is more pronounced when the plantation becomes more mature. The results also indicated that F(sh) contributed more to F(eco) in the natural grassland whereas F(va) contributed more to F(eco) in the planted grasslands. The regression analyses show that climate factors(air temperature and relative humidity) and soil properties(soil organic matter, soil temperature, and soil moisture) strongly affected respiration fluxes in all grasslands. However, our observation period was admittedly too short. To fully understand the effects of such land-use changes(i.e., converting natural grasslands into planted grasslands) on respiration fluxes, longer-term observations are badly needed. 展开更多
关键词 natural grasslands planted grasslands ecosystem respiration soil respiration vegetation autotrophicrespiration Inner Mongoia
下载PDF
Human Respiration Rate Estimation Using Ultra-wideband Distributed Cognitive Radar System 被引量:2
8
作者 Predrag Rapajic 《International Journal of Automation and computing》 EI 2008年第4期325-333,共9页
It has been shown that remote monitoring of pulmonary activity can be achieved using ultra-wideband (UWB) systems, which shows promise in home healthcare,rescue,and security applications.In this paper,we first present... It has been shown that remote monitoring of pulmonary activity can be achieved using ultra-wideband (UWB) systems, which shows promise in home healthcare,rescue,and security applications.In this paper,we first present a multi-ray propagation model for UWB signal,which is traveling through the human thorax and is reflected on the air/dry-skin/fat/muscle interfaces,A geometry-based statistical channel model is then developed for simulating the reception of UWB signals in the indoor propagation environment.This model enables replication of time-varying multipath profiles due to the displacement of a human chest.Subsequently, a UWB distributed cognitive radar system (UWB-DCRS) is developed for the robust detection of chest cavity motion and the accurate estimation of respiration rate.The analytical framework can serve as a basis in the planning and evaluation of future rheasurement programs.We also provide a case study on how the antenna beamwidth affects the estimation of respiration rate based on the proposed propagation models and system architecture. 展开更多
关键词 Medical and patient monitoring sensing technologies and signal processing vital sign ULTRA-WIDEBAND distributed cog-nitive radar respiration rate estimation.
下载PDF
The weak effects of fencing on ecosystem respiration,CH4,and N2O fluxes in a Tibetan alpine meadow during the growing season 被引量:1
9
作者 YiGang Hu ZhenHua Zhang +3 位作者 ShiPing Wang ZhiShan Zhang Yang Zhao ZengRu Wang 《Research in Cold and Arid Regions》 CSCD 2017年第6期642-655,共14页
Fencing is the most common land-management practice to protect grassland degradation from livestock overgrazing on the Tibetan Plateau. However, it is unclear whether fencing reduces CO_2, CH_4, and N_2O emission. Her... Fencing is the most common land-management practice to protect grassland degradation from livestock overgrazing on the Tibetan Plateau. However, it is unclear whether fencing reduces CO_2, CH_4, and N_2O emission. Here, we selected four vegetation types of alpine meadow(graminoid, shrub, forb, and sparse vegetation) to determine fencing effects on ecosystem respiration(Re), CH_4, and N_2O fluxes during the growing season. Despite increased average monthly ecosystem respiration(Re) for fenced graminoid vegetation at the end of the growing season, there was no significant difference between grazing and fencing across all vegetation types. Fencing significantly reduced average CH_4 uptake by about 50% in 2008 only for forb vegetation and increased average N_2O release for graminoid vegetation by 38% and 48% in 2008 and 2009,respectively. Temperature, moisture, total organic carbon, C/N, nitrate, ammonia, and/or bulk density of soil, as well as above-and belowground biomass, explained 19%~71% and 6%~33% of variation in daily and average Re and CH_4 fluxes across all vegetation types, while soil-bulk density explained 27% of variation in average N_2O fluxes. Stepwise regression showed that soil temperature and soil moisture controlled average Re, while soil moisture and bulk density controlled average CH_4 fluxes. These results indicate that abiotic factors control Re, CH_4, and N_2O fluxes; and grazing exclusion has little effect on reducing their emission—implying that climatic change rather than grazing may have a more important influence on the budgets of Re and CH_4 for the Tibetan alpine meadow during the growing season. 展开更多
关键词 FENCING ecosystem respiration methane nitrous oxide TIBETAN ALPINE MEADOW
下载PDF
Spatial Variations of Soil Respiration in Arid Ecosystems 被引量:1
10
作者 Gang Liu Rei Sonobe Quan Wang 《Open Journal of Ecology》 2016年第4期192-205,共14页
Soil respiration releases a major carbon flux back to atmosphere and thus plays an important role in global carbon cycling. Soil respiration is well known for its significant spatial variation in terrestrial ecosystem... Soil respiration releases a major carbon flux back to atmosphere and thus plays an important role in global carbon cycling. Soil respiration is well known for its significant spatial variation in terrestrial ecosystems, especially in fragile ecosystems of arid land, where vegetation is distributed sparsely and the climate changes dramatically. In this study, soil respiration in three typical arid ecosystems: desert ecosystem (DE), desert-farmland transition ecosystem (TE) and farmland ecosystem (FE) in an arid area of northwestern China were studied for their spatial variations in 2012 and 2013. Along with soil respiration (SR), soil surface temperature (ST), soil moisture (SM) and soil electrical conductivity (ECb) were also recorded to investigate the spatial variations and the correlations among them. The results revealed that averaged soil respiration rate was much lower in DE than those in TE and FE. No single factor could adequately explain the variation of soil respiration, except a negative relationship between soil temperature and soil respiration in FE (P < 0.05). Geostatistical analysis showed that the spatial heterogeneity of soil respiration in DE was insignificant but notably in both TE and FE, especially in FE, which was mainly attributed to the different vegetation or soil moisture characteristics in the three ecosystems. The results obtained in this study will help to provide a better understanding on spatial variations of soil respiration and soil properties in arid ecosystems and also on macroscale carbon cycling evaluations. 展开更多
关键词 Soil respiration Spatial Variation Arid Ecosystems GEOSTATISTICS TEMPERATURE MOISTURE
下载PDF
Warming Changed Soil Respiration Dynamics of Alpine Meadow Ecosystem on the Tibetan Plateau
11
作者 Junfeng Wang Ziqiang Yuan +1 位作者 Qingbai Wu Rashad Rafique 《Journal of Environmental & Earth Sciences》 2019年第2期7-17,共11页
Alpine meadow system underlain by permafrost on the Tibetan Plateau contains vast soil organic carbon and is sensitive to global warming.However,the dynamics of annual soil respiration(Rs)under long-term warming and t... Alpine meadow system underlain by permafrost on the Tibetan Plateau contains vast soil organic carbon and is sensitive to global warming.However,the dynamics of annual soil respiration(Rs)under long-term warming and the determined factors are still not very clear.Using opentop chambers(OTC),we assessed the effects of two-year experimental warming on the soil CO2 emission and the Q10 value(temperature sensitivity coefficient)under different warming magnitudes.Our study showed that the soil CO2 efflux rate in the warmed plots were 1.22 and 2.32 times higher compared to that of controlled plots.However,the Q10 value decreased by 45.06%and 50.34%respectively as the warming magnitude increased.These results suggested that soil moisture decreasing under global warming would enhance soil CO2 emission and lower the temperature sensitivity of soil respiration rate of the alpine meadow ecosystem in the permafrost region on the Tibetan Plateau.Thus,it is necessary to take into account the combined effect of ground surface warming and soil moisture decrease on the Rs in order to comprehensively evaluate the carbon emissions of the alpine meadow ecosystem,especially in short and medium terms. 展开更多
关键词 Soil respiration Alpine meadow Experimental warming Open-top chamber
下载PDF
Long-term thinning decreases the contribution of heterotrophic respiration to soil respiration in subalpine plantations
12
作者 Longfei Chen Zhibin He +7 位作者 Wenzhi Zhao Xi Zhu Qin Shen Mingdan Song Zhengpeng Li Junqia Kong Shuping Yang Yuan Gao 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第3期189-204,共16页
Interest in the dynamics of soil respiration(R_(S))in subalpine forest ecosystems is increasing due to their high soil carbon density and potential sensitivity to environmental changes.However,as a principal silvicult... Interest in the dynamics of soil respiration(R_(S))in subalpine forest ecosystems is increasing due to their high soil carbon density and potential sensitivity to environmental changes.However,as a principal silvicultural practice,the long-term impacts of thinning on R_(S) and its heterotrophic and autotrophic respiration components(R_(h) and Ra,respectively)in subalpine plantations are poorly understood,espe-cially in winter.A 3-year field observation was carried out with consideration of winter CO_(2) efflux in middle-aged sub-alpine spruce plantations in northwestern China.A trench-ing method was used to explore the long-term impacts of thinning on Rs,Rn and R_(a).Seventeen years after thinning,mean annual Rs,Rn and R_(a) increased,while the contribu-tion of R_(h) to R_(s) decreased with thinning intensity.Thinning significantly decreased winter R,because of the reduction in R_(n) but had no significant effect on Ra.The temperature sensitivity(Q_(10))of R_(h) and R_(a) also increased with thinning intensity,with lower Q_(10) values for R_(h)(2.1-2.6)than for Ra(2.4-2.8).The results revealed the explanatory variables and pathways related to R_(n) and R_(a) dynamics.Thinning increased soil moisture and nitrate nitrogen(NO_(3)^(-)-N),and the enhanced nitrogen and water availability promoted R_(h) and R_(a) by improving fine root biomass and microbial activity.Our results highlight the positive roles of NO_(3)^(-)-N in stimulating R_(s) components following long-term thinning.Therefore,applications of nitrogen fertilizer are not recommended while thinning subalpine spruce plantations from the perspective of reducing soil CO_(2) emissions.The increased Q_(10) values of R_(s) components indicate that a large increase in soil CO_(2) emissions would be expected following thinning because of more pronounced climate warming in alpineregions. 展开更多
关键词 Heterotrophic respiration Autotrophic respiration Long-term thinning impacts Cold seasons Subalpine plantations Temperature sensitivity
下载PDF
Interannual Variation in Terrestrial Ecosystem Carbon Fluxes in China from 1981 to 1998 被引量:35
13
作者 曹明奎 陶波 +2 位作者 李克让 邵雪梅 Stephen D PRIENCE 《Acta Botanica Sinica》 CSCD 2003年第5期552-560,共9页
A dynamic biogeochemical model was used to estimate the responses of China's terrestrial net primary productivity (NPP), soil heterotrophic respiration (HR) and net ecosystem productivity (NEP) to changes in clima... A dynamic biogeochemical model was used to estimate the responses of China's terrestrial net primary productivity (NPP), soil heterotrophic respiration (HR) and net ecosystem productivity (NEP) to changes in climate and atmospheric CO2 from 1981 to 1998. Results show that China's total NPP varied between 2.89 and 3.37 Gt C/a and had an increasing trend by 0.32% per year, HR varied between 2.89 and 3.21 Gt C/a and grew by 0.40% per year, Annual NEP varied between -0.32 and 0.25 Gt C but had no statistically significant interannual trend. The positive mean NEP indicates that China's terrestrial ecosystems were taking up carbon with a total carbon sequestration of 1.22 Gt C during the analysis period. The terrestrial NEP in China related to climate and atmospheric CO2 increases accounted for about 10% of the world's total and was similar to the level of the United States in the same period. The mean annual NEP for the analysis period was near to zero for most of the regions in China, but significantly positive NEP occurred in Northeast China Plain, the southeastern Xizang (Tibet) and Huang-Huai-Hai Plain, and negative NEP occurred in the Da Hinggan Mountains, Xiao Hinggan Mountains, Loess Plateau and Yunnan-Guizhou Plateau. China's climate at the time was warm and dry relative to other periods, so the estimated NEP is probably lower than the average level. China's terrestrial NEP may increase if climate becomes wetter but is likely to continue to decrease if the present warming and drying trend sustains. 展开更多
关键词 China net primary productivity (NPP) soil heterotrophic respiration (HR) net ecosystem productivity (NEP) climate change
下载PDF
Correlations Between Plant Biomass and Soil Respiration in a Leymus chinensis Community in the Xilin River Basin of Inner Mongolia 被引量:13
14
作者 李凌浩 韩兴国 +7 位作者 王其兵 陈全胜 张焱 杨晶 闫志丹 李鑫 白文明 宋世环 《Acta Botanica Sinica》 CSCD 2002年第5期593-597,共5页
This paper reports on two years of measurement of soil respiration and canopy-root biomass in a Leymus chinensis community in the Xilin River basin of Inner Mongolia. Correlations between components of plant biomass a... This paper reports on two years of measurement of soil respiration and canopy-root biomass in a Leymus chinensis community in the Xilin River basin of Inner Mongolia. Correlations between components of plant biomass and soil respiration rates were examined. From respiration data based on CO2 uptake by NaOH and corresponding root biomass values for each run of 10 plots, a linear regression of CO2 evolution rates on root dry weights has been achieved for every ten days. By applying the approach of extrapolating the regressive line to zero root biomass, the proportion of the total soil respiration flux that is attributable to live root respiration was estimated to be about 27% on average, ranging from 14% to 39% in the growing season in 1998. There were no evident relations between the total canopy biomass or root biomass and CO2 evolution rates, but a significant exponential relation did exist between tire live-canopy biomass and CO2 evolution rates. 展开更多
关键词 root respiration total soil respiration temperate grassland plant biomass
下载PDF
Effects of soil temperature and soil water content on soil respiration in three forest types in Changbai Mountain 被引量:9
15
作者 王淼 李秋荣 +1 位作者 肖冬梅 董百丽 《Journal of Forestry Research》 SCIE CAS CSCD 2004年第2期113-118,i002,共7页
Soil incubation experiments were conducted in lab to delineate the effect of soil temperature and soil water content on soil respirations in broad-leaved/Korean pine forest (mountain dark brown forest soil), dark coni... Soil incubation experiments were conducted in lab to delineate the effect of soil temperature and soil water content on soil respirations in broad-leaved/Korean pine forest (mountain dark brown forest soil), dark coniferous forest (mountain brown coniferous forest soil) and erman's birch forest (mountain soddy forest soil) in Changbai Mountain in September 2001. The soil water content was adjusted to five different levels (9%, 21%, 30%, and 43%) by adding certain amount of water into the soil cylinders, and the soil sample was incubated at 0, 5, 15, 25 and 35°C for 24 h. The results indicated that in broad-leaved/Korean pine forest the soil respiration rate was positively correlated to soil temperature from 0 to 35°C. Soil respiration rate increased with increase of soil water content within the limits of 21% to 37%, while it decreased with soil water content when water content was over the range. The result suggested the interactive effects of temperature and water content on soil respiration. There were significant differences in soil respiration among the various forest types. The soil respiration rate was highest in broad-leaved/Korean pine forest, middle in erman's birch forest and the lowest in dark coniferous forest. The optimal soil temperature and soil water content for soil respiration was 35°C and 37% in broad-leaved/Korean pine forest, 25°C and 21% in dark coniferous forest, and 35°C and 37% in erman's birch forest. Because the forests of broad-leaved/Korean pine, dark coniferous and erman's birch are distributed at different altitudes, the soil temperature had 4–5°C variation in different forest types during the same period. Thus, the soil respiration rates measured in brown pine mountain soil were lower than those in dark brown forest and those measured in mountain grass forest soil were higher than those in brown pine mountain soil. Key words Soil temperature - Soil water content - Soil respiration - The typical forest ecosystem in Changbai Mountain CLC number S7118.51 Document code A Foundation item: This study was supported by grant from the National Natural Science Foundation of China (No. 30271068), the grant of the Knowledge Innovation Program of Chinese Academy of Sciences (KZ-CX-SW-01-01B-12) and the grant from Advanced Programs of Institute of Applied Ecology Chinese Academy of Sciences.Biography: WANG Miao (1964-), male, associate professor in Institute of Applied Ecology, Chinese Academy of Science, Shenyang 110016, P. R. China.Responsible editor: Song Funan 展开更多
关键词 Soil temperature Soil water content Soil respiration The typical forest ecosystem in Changbai Mountain
下载PDF
Stem Respiration of a Larch (Larix gmelini) Plantation in Northeast China 被引量:11
16
作者 王文杰 杨逢建 +4 位作者 祖元刚 王慧梅 TAKAGI Kentaro SASA Kaichiro KOIKE Takayoshi 《Acta Botanica Sinica》 CSCD 2003年第12期1387-1397,共11页
Stem respiration is an important part of the activity of a tree and is an important source of CO2 evolution from a forest ecosystem. Presently, no standard methods are available for the accurate estimation of total st... Stem respiration is an important part of the activity of a tree and is an important source of CO2 evolution from a forest ecosystem. Presently, no standard methods are available for the accurate estimation of total stem CO2 efflux from a forest. In the current study, a 33-year-old (by the year 2001) larch (Larix gmelini Rupr.) plantation was measured throughout 2001-2002 to analyze its monthly and seasonal patterns of stem respiration. Stem respiration rate was also measured at different heights, at different daily intervals and any variation in the larch plantation was recorded. The relationship between stem temperature, growth status and respiration rate was analyzed. Higher respiration rates were recorded in upper reaches of the larch tree throughout the season and these were affected partially by temperature difference. Midday depression was found in the diurnal changes in stem respiration. In the morning, but not in the afternoon, stem respiration was positively correlated with stem temperature. The reason for this variation may be attributed to water deficit, which was stronger in the afternoon. In the larch plantation, a maximum 7-fold variation in stem respiration was found. The growth status (such as mean growth rate of stem and canopy projection area) instead of stem temperature difference was positively correlated with this large variation. An S-model (sigmoid curve) or Power model shows the greatest regression of the field data. In the courses of seasonal and annual changes of stem respiration, peak values were observed in July of both years, but substantial interannual differences in magnitude were observed. An exponential model can clearly show this regression of the temperature-respiration relationship. In our results, Q(10) values ranged from 2.22 in 2001 to 3.53 in 2002. Therefore, estimation of total stem CO2 efflux only by a constant Q(10) value may give biased results. More parameters of growth status and water status should be considered for more accurate estimation. 展开更多
关键词 Larix gmelini stem respiration growth status growth rate canopy projection area Q(10)
下载PDF
The contribution of root respiration of Pinus koraiensis seedlings to total soil respiration under elevated CO_2 concentrations 被引量:14
17
作者 刘颖 韩士杰 +3 位作者 李雪峰 周玉梅 张军辉 贾夏 《Journal of Forestry Research》 SCIE CAS CSCD 2004年第3期187-191,共5页
The impacts of elevated atmospheric CO2 concentrations (500 靘olmol-1and 700 靘olmol-1) on total soil respiration and the contribution of root respiration of Pinus koraiensis seedlings were investigated from May to Oc... The impacts of elevated atmospheric CO2 concentrations (500 靘olmol-1and 700 靘olmol-1) on total soil respiration and the contribution of root respiration of Pinus koraiensis seedlings were investigated from May to October in 2003 at the Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences, Jilin Province, China. After four growing seasons in top-open chambers exposed to elevated CO2, the total soil respiration and roots respiration of Pinus koraiensis seedlings were measured by a LI-6400-09 soil CO2 flux chamber. Three PVC cylinders in each chamber were inserted about 30 cm into the soil in-stantaneously to terminate the supply of current photosynthates from the tree canopy to roots for separating the root respiration from total soil respiration. Soil respirations both inside and outside of the cylinders were measured on June 16, August 20 and October 8, respectively. The results indicated that: there was a marked diurnal change in air temperature and soil temperature at depth of 5 cm on June 16, the maximum of soil temperature at depth of 5 cm lagged behind that of air temperature, no differences in temperature between treatments were found (P>0.05). The total soil respiration and soil respiration with roots severed showed strong diurnal and seasonal patterns. There was marked difference in total soil respiration and soil respiration with roots severed between treatments (P<0.01); Mean total soil respiration and contribution of root under different treatments were 3.26, 4.78 and 1.47 靘olm 2s-1, 11.5%, 43.1% and 27.9% on June 16, August 20 and October 8, respectively. 展开更多
关键词 Contribution of root respiration Elevated CO2 Pinus koraiensis Root-severed technique Soil respiration
下载PDF
Soil heterotrophic respiration in Casuarina equisetifolia plantation at different stand ages 被引量:2
18
作者 肖胜生 叶功富 +2 位作者 张立华 金钊 刘丽香 《Journal of Forestry Research》 SCIE CAS CSCD 2009年第4期301-306,I0004,共7页
The soil respiration rates (Rh) in 6-year-old (young), 17-year-old (middle-age), 31-year-old (mature) Casuarina equisetifolia coastal plantations were measured using an LICOR-8100 automated soil CO2 flux syste... The soil respiration rates (Rh) in 6-year-old (young), 17-year-old (middle-age), 31-year-old (mature) Casuarina equisetifolia coastal plantations were measured using an LICOR-8100 automated soil CO2 flux system from May 2006 to April 2007. Results show that Rh displayed an obvious seasonal pattern across the observed years. The maximum values of Rh occurred at June and July and the minimum at December and January. Soil temperature and soil moisture as well as their interaction had significant effects on the monthly dynamics of Rh. The analysis by one-way ANOVA showed that Rh had a significantly exponential relation (p〈0.05) to soil temperature at soil depth of 5 cm, and had a linear relation (p〈0.05) to soil water content of the upper 20 cm. The result estimated by the two-factor model shows that soil temperature at soil depth of 5 cm and soil moisture at soil depth of 20 cm could explain 68.9%-91.9% of seasonal variations in Rh. The or- der of Rh rates between different stand ages was middle-age plantation〉mature plantation〉young-age plantation. With the increase of growth age of plantation, the Q10 of Rh increased. The contribution of Rh to total soil surface CO2 flux was 71.89%, 71.02% and 73.53% for the young, middle-age and mature plantation, respectively. It was estimated that the annual CO2 fluxes from Rh were 29.07, 38.964 and 30.530 t.ha^-1.a^-1 for the young, middle-age and mature plantation, respectively. 展开更多
关键词 soil heterotrophic respiration coastal plantation stand age Casuarina equiset(folia
下载PDF
Seasonal changes of soil respiration in Betula platyphylla forest in Changbai Mountain, China 被引量:2
19
作者 刘颖 韩士杰 林鹿 《Journal of Forestry Research》 SCIE CAS CSCD 2009年第4期367-371,I0007,共6页
A stdudy was conducted to determine the seasonal changes of soil respiration and the contribution of root respiration to soil respiration in Betula plaophylla forest in Changbai Mountain from May to September in 2004.... A stdudy was conducted to determine the seasonal changes of soil respiration and the contribution of root respiration to soil respiration in Betula plaophylla forest in Changbai Mountain from May to September in 2004. Results indicated that the total soil respiration, root-severed soil respiration and the root respiration followed a similar seasonal trend, with a high rate in summer due to wet and high temperature and a low rate in spring and autumn due to lower temperature. The mean rates of total soil respiration, root-severed soil respiration and root respiration were 4.44, 2.30 and 2.14 μmol.m^-2.s^-1, respectively during the growing season, and they were all exponentially correlated with temperature. Soil respiration rate had a linear correlation with soil volumetric moisture. The Q10 values for total soil respiration, root-severed soil respiration and root respiration were 2,82, 2.59 and 3. 16, respectively. The contribution rate of root respiration to the total soil respiration was between 29.3% and 58.7% during the growing season, indicating that root is a major component of soil respiration. The annual mean rates of total soil respiration, root-severed soil respiration and root respiration were 1.96, 1.08, and 0.87 μmol.m^-2.s^-1, or 741.73 408.71, and 329.24 g.m^-2.a^-1, respectively. Root respiration contributed 44.4% to the annual total soil respiration. The relationship proposed for soil respiration with soil lemperature was useful for understanding and predicting potential changes in Changbai Mountain B. platyphylla forest ecosystem in response to forest management and climate change. 展开更多
关键词 root respiration seasonal variations soil respiration soil temperature soil water content
下载PDF
Path Analysis on the Meteorological Factors Impacting Soil Respiration Rate of Wheat Field 被引量:2
20
作者 江晓东 李永秀 《Agricultural Science & Technology》 CAS 2009年第1期74-76,156,共4页
[Objective]The experiment aimed to study the effects of meteorological factors under different weather conditions on soil respiration. [ Method] The path analysis was used to analyze meteorological factors which influ... [Objective]The experiment aimed to study the effects of meteorological factors under different weather conditions on soil respiration. [ Method] The path analysis was used to analyze meteorological factors which influenced soil respiration of wheat field under different weather condition and at jointing stage. [ Result] In sunny day, the correlations between ground temperature at 5 cm, solar radiation, air relative humidity, air temperature and soil respiration were all at significant level while solar radiation and ground temperature at 5 cm were the major factors which influenced soil respiration. In cloudy day, solar radiation was a major factor which influenced soil respiration.[ Conclusion] The soil respiration and surplus path coefficient in sunny day were all higher than these in cloudy day, which demonstrated that except influenced by ground temperature, air temperature, solar radiation and air relative humidity, the soil respiration was also influenced by other factors especially biological factor. 展开更多
关键词 Soil respiration Wheat meteorological factors Path analysis
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部