期刊文献+
共找到33,739篇文章
< 1 2 250 >
每页显示 20 50 100
Optimal design of butterfly-shaped linear ultrasonic motor using finite element method and response surface methodology 被引量:9
1
作者 时运来 陈超 赵淳生 《Journal of Central South University》 SCIE EI CAS 2013年第2期393-404,共12页
A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to ... A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to realize the optimal design of the butterfly-shaped linear ultrasonic motor. First, the operation principle of the motor was introduced. Second, the finite element parameterized model of the stator of the motor was built using ANSYS parametric design language and some structure parameters of the stator were selected as design variables. Third, the sample points were selected in design variable space using latin hypercube Design. Through modal analysis and harmonic response analysis of the stator based on these sample points, the target responses were obtained. These sample points and response values were combined together to build a response surface model. Finally, the simplex method was used to find the optimal solution. The experimental results showed that many aspects of the design requirements of the butterfly-shaped linear ultrasonic motor have been fulfilled. The prototype motor fabricated based on the optimal design result exhibited considerably high dynamic performance, such as no-load speed of 873 ram/s, maximal thrust of 27.5 N, maximal efficiency of 43%, and thrust-weight ratio of 45.8. 展开更多
关键词 linear ultrasonic motor PIEZOELECTRIC optimal design response surface methodology finite element method
下载PDF
Comparative analysis of thermodynamic and mechanical responses between underground hydrogen storage and compressed air energy storage in lined rock caverns
2
作者 Bowen Hu Liyuan Yu +5 位作者 Xianzhen Mi Fei Xu Shuchen Li Wei Li Chao Wei Tao Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期531-543,共13页
Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to comp... Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to compare the properties of hydrogen and air with typical thermodynamic storage processes.This study employs a multi-physical coupling model to compare the operations of CAES and UHS,integrating gas thermodynamics within caverns,thermal conduction,and mechanical deformation around rock caverns.Gas thermodynamic responses are validated using additional simulations and the field test data.Temperature and pressure variations of air and hydrogen within rock caverns exhibit similarities under both adiabatic and diabatic simulation modes.Hydrogen reaches higher temperature and pressure following gas charging stage compared to air,and the ideal gas assumption may lead to overestimation of gas temperature and pressure.Unlike steel lining of CAES,the sealing layer(fibre-reinforced plastic FRP)in UHS is prone to deformation but can effectively mitigates stress in the sealing layer.In CAES,the first principal stress on the surface of the sealing layer and concrete lining is tensile stress,whereas UHS exhibits compressive stress in the same areas.Our present research can provide references for the selection of energy storage methods. 展开更多
关键词 Underground hydrogen storage Compressed air energy storage Mechanical response Thermodynamic response lined rock caverns
下载PDF
The Influence of Tartaric Acid in the Silver Nanoparticle Synthesis Using Response Surface Methodology
3
作者 Yatim Lailun Ni’mah Afaf Baktir +1 位作者 Dewi Santosaningsih Suprapto Suprapto 《Journal of Renewable Materials》 EI CAS 2024年第2期245-258,共14页
Silver nanoparticles(AgNPs)synthesized using tartaric acid as a capping agent have a great impact on the reaction kinetics and contribute significantly to the stability of AgNPs.The protective layer formed by tartaric... Silver nanoparticles(AgNPs)synthesized using tartaric acid as a capping agent have a great impact on the reaction kinetics and contribute significantly to the stability of AgNPs.The protective layer formed by tartaric acid is an important factor that protects the silver surface and reduces potential cytotoxicity problems.These attributes are critical for assessing the compatibility of AgNPs with biological systems and making them suitable for drug delivery applications.The aim of this research is to conduct a comprehensive study of the effect of tartaric acid concentration,sonication time and temperature on the formation of silver nanoparticles.Using Response Surface Methodology(RSM)with Face-Centered Central Composite Design(FCCD),the optimization process identifies the most favorable synthesis conditions.UV-Vis spectrum regression analysis shows that AgNPs stabilized with tartaric acid are more stable than AgNPs without tartaric acid.This highlights the increased stability that tartaric acid provides in AgNP ssssynthesis.Particle size distribution analysis showed a multimodal distribution for AgNPs with tartaric acid and showed the smallest size peak with an average size of 20.53 nm.The second peak with increasing intensity shows a dominant average size of 108.8 nm accompanied by one standard deviation of 4.225 nm and a zeta potential of−11.08 mV.In contrast,AgNPs synthesized with polyvinylpyrrolidone(PVP)showed a unimodal particle distribution with an average particle size of 81.62 nm and a zeta potential of−2.96 mV.The more negative zeta potential of AgNP-tartaric acid indicates its increased stability.Evaluation of antibacterial activity showed that AgNPs stabilized with tartaric acid showed better performance against E.coli and B.subtilis bacteria compared with AgNPs-PVP.In summary,this study highlights the potential of tartaric acid in AgNP synthesis and suggests an avenue for the development of stable AgNPs with versatile applications. 展开更多
关键词 Tartaric acid silver nanoparticle polyvinyl pyrrolidone response surface methodology
下载PDF
Optimization and Characterization of Cellulose Extraction from Grevillea robusta (Silky Oak) Leaves by Soda-Anthraquinone Pulping Using Response Surface Methodology
4
作者 Catherine N. Muya John M. Onyari +2 位作者 Lydia W. Njenga Joab O. Onyango Wilson M. Gitari 《Green and Sustainable Chemistry》 2024年第3期43-65,共23页
Response surface methodology (RSM) using the central composite design (CCD) was applied to examine the impact of soda-anthraquinone pulping conditions on Grevillea robusta fall leaves. The pulping factors studied were... Response surface methodology (RSM) using the central composite design (CCD) was applied to examine the impact of soda-anthraquinone pulping conditions on Grevillea robusta fall leaves. The pulping factors studied were: NaOH charge 5% to 20% w/v, pulping time 30 to 180 minutes, and the anthraquinone charge 0.1 to 0.5% w/w based on the oven-dried leaves. The responses evaluated were the pulp yield, cellulose content, and the degree of delignification. Various regression models were used to evaluate the effects of varying the pulping conditions. The optimum conditions attained were;NaOH charge of 14.63%, 0.1% anthraquinone, and a pulping period of 154 minutes, corresponding to 20.68% pulp yield, 80.56% cellulose content, and 70.34% lignin removal. Analysis of variance (ANOVA), was used to determine the most important variables that improve the extraction process of cellulose. The experiment outcomes matched those predicted by the model (Predicted R2 = 0.9980, Adjusted R2 = 0.9994), demonstrating the adequacy of the model used. FTIR analysis confirmed the elimination of the non-cellulosic fiber constituents. The lignin and hemicellulose-related bands (around 1514 cm−1, 1604 cm−1, 1239 cm−1, and 1734 cm−1) decreased with chemical treatment, indicating effective cellulose extraction by the soda-anthraquinone method. Similar results were obtained by XRD, SEM and thermogravimetric analysis of the extracted cellulose. Therefore, Grevillea robusta fall leaves are suitable renewable, cost-effective, and environmentally friendly non-wood biomass for cellulose extraction. 展开更多
关键词 Cellulose Extraction response surface Methodology Central Composite Design DELIGNIFICATION
下载PDF
Optimizing Bucket Elevator Performance through a Blend of Discrete Element Method, Response Surface Methodology, and Firefly Algorithm Approaches
5
作者 Pirapat Arunyanart Nithitorn Kongkaew Supattarachai Sudsawat 《Computers, Materials & Continua》 SCIE EI 2024年第8期3379-3403,共25页
This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization a... This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization algorithms.Specifically,the study employs the firefly algorithm(FA),a metaheuristic optimization technique,to optimize bucket elevator parameters for maximizing transport mass and mass flow rate discharge of granular materials under specified working conditions.The experimental methodology involves several key steps:screening experiments to identify significant factors affecting bucket elevator operation,central composite design(CCD)experiments to further explore these factors,and response surface methodology(RSM)to create predictive models for transport mass and mass flow rate discharge.The FA algorithm is then applied to optimize these models,and the results are validated through simulation and empirical experiments.The study validates the optimized parameters through simulation and empirical experiments,comparing results with DEM simulation.The outcomes demonstrate the effectiveness of the FA algorithm in identifying optimal bucket parameters,showcasing less than 10%and 15%deviation for transport mass and mass flow rate discharge,respectively,between predicted and actual values.Overall,this research provides insights into the critical factors influencing bucket elevator operation and offers a systematic methodology for optimizing bucket parameters,contributing to more efficient material handling in various industrial applications. 展开更多
关键词 Discrete element method(DEM) design of experiments(DOE) firefly algorithm(FA) response surface methodology(RSM)
下载PDF
Optimization of Preparation of Oregano Oil Microspheres by Box-Behnken Response Surface Methodology
6
作者 Fei HAN Mengyao TU +5 位作者 Hui YANG Hekun DUAN Fuhao HU Xinli LIANG Yang GUAN Wei XU 《Medicinal Plant》 2024年第4期40-45,共6页
[Objectives]To optimize the formulation and preparation of oregano oil microspheres by Box-Behnken response surface methodology.[Methods]Chitosan was used as the carrier material to prepare oregano oil microspheres by... [Objectives]To optimize the formulation and preparation of oregano oil microspheres by Box-Behnken response surface methodology.[Methods]Chitosan was used as the carrier material to prepare oregano oil microspheres by emulsion crosslinking method.The encapsulation efficiency,drug loading and ID 50 were used as the evaluation indicators,and the comprehensive score(OD)obtained by"coefficient of variation-AHP comprehensive weighting method"was used as the final evaluation indicator.The formulation design and preparation process were optimized by single factor experiment and Box-Behnken response surface methodology,and the optimal process parameters were determined.[Results]The optimal formulation and preparation process parameters of oregano oil microspheres were as follows:the ratio of oregano oil to chitosan was 2∶1,the emulsifying speed of double emulsion was 200 r/min,the amount of emulsifier in the colostrum was 4%,and the volume of curing agent was 1.0 mL.The average encapsulation efficiency was 45.33%±1.32%,the average drug loading was 30.59%±2.45%,and the median diameter(ID 50)was 52.596μm±0.023%.[Conclusions]The encapsulation efficiency,drug loading and ID 50 of oregano oil chitosan microspheres prepared by emulsion crosslinking method met the requirements.The drug-loaded microsphere not only can be used as a preparation finished product for direct application,but also be used as a product intermediate to lay a foundation for the research and development of subsequent dosage forms. 展开更多
关键词 Oregano oil CHITOSAN MICROSPHERES PREPARATION response surface methodology(RSM)
下载PDF
Optimization of Enzymatic Extraction Process of Polysaccharides from Pseudostellaria heterophylla Fibrous Roots by Response Surface Methodology and Its Pilot Application
7
作者 Huiqing PAN Qi ZHAO +1 位作者 Yanda ZHANG Rongping YANG 《Medicinal Plant》 2024年第5期17-21,共5页
[Objectives]To study and optimize the process conditions of enzymatic hydrolysis technology for extracting polysaccharides from Pseudostellaria heterophylla fibrous roots and its application in workshop pilot tests.[M... [Objectives]To study and optimize the process conditions of enzymatic hydrolysis technology for extracting polysaccharides from Pseudostellaria heterophylla fibrous roots and its application in workshop pilot tests.[Methods]P.heterophylla fibrous roots were taken as the matrix material,and Box Behnken design was used to analyze the extraction time,composite enzyme addition amount,and liquid-solid ratio for response surface optimization experiments,and then applied to the pilot extraction of P.heterophylla fibrous roots.[Results]Response surface analysis showed that all factors had a significant impact on the experimental indicators.The optimal extraction process conditions for polysaccharides from P.heterophylla fibrous roots were extraction time of 2.7 h,compound enzyme addition of 2.5%,and liquid-solid ratio of 32.The yield of polysaccharides from P.heterophylla fibrous roots was 4.83%.The water extraction process of P.heterophylla fibrous roots extraction pilot was used as the control group for response surface optimization of the pilot experiment.The optimization results showed that the extraction time was 3 h,the amount of composite enzyme added was 2.5%,and the liquid-solid ratio was 28.The polysaccharide yield was 4.75%,an increase of 4.63%compared to the control group.[Conclusions]This paper could provide feasibility for the innovation of enzy-matic hydrolysis technology for P.heterophylla fibrous roots and its workshop pilot practice application,as well as a reference for the industrial application of its medicinal resources. 展开更多
关键词 Pseudostellaria heterophylla fibrous roots POLYSACCHARIDES Enzymatic extraction Pilot production response surface opti timization
下载PDF
Optimization of Methylene Blue Dye Adsorption onto Coconut Husk Cellulose Using Response Surface Methodology: Adsorption Kinetics, Isotherms and Reusability Studies
8
作者 Frank Ouru Omwoyo Geoffrey Otieno 《Journal of Materials Science and Chemical Engineering》 2024年第2期1-18,共18页
In this study, coconut husk cellulose was employed as a cost-effective and environmentally friendly adsorbent to eliminate methylene blue (MB) dye from aqueous solutions. The successful development of response surface... In this study, coconut husk cellulose was employed as a cost-effective and environmentally friendly adsorbent to eliminate methylene blue (MB) dye from aqueous solutions. The successful development of response surface methodology paired with a central composite design (RSM-CCD) enabled the optimization and modelling of the adsorption process. The study investigated the individual and combined effects of three variables (pH, contact time, and initial MB dye concentration) on the adsorption of MB dye onto coconut husk cellulose. The developed RSM-CCD model exhibited a remarkable degree of precision in predicting the removal efficiency of MB dye within the specified experimental parameters. This was demonstrated by the strong regression parameters, with an R<sup>2</sup> value of 99.79% and an adjusted R<sup>2</sup> value of 99.6%. The study depicted that the optimal parameters for attaining a 98.8827% removal of MB dye using coconut husk cellulose were as follows: an initial MB dye concentration of 30 mg∙L<sup>−1</sup>, contact time of 120 minutes, and pH 7 at a fixed adsorbent dose of 0.5 g. The Freundlich isotherm model provided the most satisfactory description of the equilibrium adsorption isotherms, suggesting that MB dye adsorption onto coconut husk cellulose occurs on a heterogeneous surface. The experimental results demonstrated a strong agreement with the pseudo-second-order kinetics model, indicating that the number of active sites present on the cellulose adsorbent predominantly influences the adsorption process of MB dye. Additionally, the adsorbent made from coconut husk cellulose exhibited the potential to be reused, as it retained its efficiency for a maximum of three cycles of adsorption of MB dye. The results of this study show that coconut husk cellulose has the potential to be an effective and sustainable adsorbent for removing MB dye from aqueous solutions. 展开更多
关键词 Adsorption Kinetics Isotherms OPTIMIZATION response surface Methodology CELLULOSE
下载PDF
Optimization of Cellulose Nanocrystal Isolation from Ayous Sawdust Using Response Surface Methodology
9
作者 Tchigo Alifa Hamida Aminatou +1 位作者 Oumar Said Jean-Bosco Tchatchueng 《Journal of Materials Science and Chemical Engineering》 2024年第1期36-55,共20页
This study focuses on the extraction of cellulose nanocrystals (CNC), from microcrystalline cellulose (MCC), derived from Ayous sawdust. The process involves multiple steps and a large amount of chemical products. The... This study focuses on the extraction of cellulose nanocrystals (CNC), from microcrystalline cellulose (MCC), derived from Ayous sawdust. The process involves multiple steps and a large amount of chemical products. The objective of this research was to determine the effects of factors that impact the isolation process and to identify the optimal conditions for CNC isolation by using the response surface methodology. The factors that varied during the process were the quantity of MCC, the concentration of sulfuric acid, the hydrolysis time and temperature, and the ultrasonic treatment time. The response measured was the yield. The study found that with 5.80 g of microcrystalline cellulose, a sulfuric acid concentration of 63.50% (w/w), a hydrolysis time of 53 minutes, a hydrolysis temperature of 69˚C, and a sonication time of 19 minutes are the ideal conditions for isolation. The experimental yield achieved was (37.84 ± 0.99) %. The main factors influencing the process were the sulfuric acid concentration, hydrolysis time and temperature, with a significant influence (p < 0.05). Infrared characterization results showed that nanocrystals were indeed isolated. With a crystallinity of 35.23 and 79.74, respectively, for Ayous wood fiber and nanocrystalline cellulose were observed by X-ray diffraction, with the formation of type II cellulose, thermodynamically more stable than native cellulose type I. 展开更多
关键词 Ayous Sawdust Lignocellulosic Waste ISOLATION Cellulose Nanocrystals OPTIMIZATION response surface Methodology
下载PDF
Magnetic Field Curves and Magnetic Equipotential Surfaces around Crossing Electrical Wires Replacing Classical Magnetic Field Lines
10
作者 Geoffroy Auvert 《Open Journal of Applied Sciences》 2024年第8期1996-2008,共13页
This article is based on a recent model specifically defining magnetic field values around electrical wires. With this model, calculations of field around parallel wires were obtained. Now, this model is extended with... This article is based on a recent model specifically defining magnetic field values around electrical wires. With this model, calculations of field around parallel wires were obtained. Now, this model is extended with the new concept of magnetic equipotential surface to magnetic field curves around crossing wires. Cases of single, double, and triple wires are described. Subsequent article will be conducted for more general scenarios where wires are neither infinite nor parallel. 展开更多
关键词 Magnetic Field Value Magnetic Field Vector Magnetic Field line Magnetic Field Curve Equipotential surface Crossing Electrical Wires Magnetic Cross Product
下载PDF
Dynamic optimization analysis of hydraulic pipeline system based on a developed response surface method
11
作者 Hongquan QU Jianlin SUN +5 位作者 Xu YAN Yuanlin ZHANG Xuefeng LIU Tao YU HuaweiHAN Langjun XU 《Mechanical Engineering Science》 2020年第2期7-14,I0004,共9页
When designing a complex pipeline with long distance and multi-supports for offshore platform,it is necessary to analyze the vibration characteristics of the complex pipeline system to ensure that there is no harmful ... When designing a complex pipeline with long distance and multi-supports for offshore platform,it is necessary to analyze the vibration characteristics of the complex pipeline system to ensure that there is no harmful resonance in the working conditions.Therefore,the optimal layout of support is an effective method to reduce the vibration response of hydraulic pipeline system.In this paper,a developed dynamic optimization method for the complex pipeline is proposed to investigate the vibration characteristics of complex pipeline with multi-elastic supports.In this method,the Kriging response surface model between the support position and pipeline is established.The position of the clamp in the model is parameterized and the optimal solution of performance index is obtained by genetic algorithm.The number of clamps and the interval between clamps are considered as the constraints of layout optimization,and the optimization objective is the natural frequencies of pipeline.Taking a typical offshore pipeline as example to demonstrate the effectiveness of the proposed method,the results show that the vibration performance of the hydraulic pipeline system is distinctly improved by the optimization procedure,which can provide reasonable guidance for the design of complex hydraulic pipeline system. 展开更多
关键词 Hydraulic pipeline Multi-Support response surface method Optimization analysis
下载PDF
Response surface optimization of process parameters for reduction roasting of low-grade pyrolusite by bagasse 被引量:8
12
作者 杨克迪 叶显甲 +4 位作者 苏静 粟海锋 龙云飞 吕小艳 文衍宣 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第2期548-555,共8页
The reduction roasting processes for low-grade pyrolusite using bagasse as the reducing agent was statistically analyzed. The central composite rotatable design (CCD) was used to optimize this reduction roasting pro... The reduction roasting processes for low-grade pyrolusite using bagasse as the reducing agent was statistically analyzed. The central composite rotatable design (CCD) was used to optimize this reduction roasting processes. The three process parameters studied were the mass ratio of bagasse to ore, the roasting temperature and the roasting time. Analysis of variance (ANOVA) was used to analyze the experimental results. The interactions between the process parameters were done by using the linear and quadratic model. The results revealed that the linear and quadratic effects as well as the interaction are statistically significant for the mass ratio and roasting temperature but insignificant for the roasting time. The optimal conditions of 0.9:10 of mass ratio, the roasting temperature of 450 ~C, the roasting time of 30 min were obtained. Under these conditions, the predicted leaching recovery rate for manganese was 98.1%. And the satisfied experimental result of 98.2% confirmed the validity of the model. 展开更多
关键词 PYROLUSITE reduction roasting BAGASSE response surface methodology
下载PDF
Optimization of preparing V_2O_5 by calcination from ammonium metavanadate using response surface methodology 被引量:6
13
作者 刘秉国 彭金辉 +3 位作者 万润东 张利波 郭胜惠 张世敏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第3期673-678,共6页
Parameters of technique to prepare vanadium pentoxide by calcination from ammonium metavanadate were optimized using central composite design of response surface methodology. A quadratic equation model for decompositi... Parameters of technique to prepare vanadium pentoxide by calcination from ammonium metavanadate were optimized using central composite design of response surface methodology. A quadratic equation model for decomposition rate was built and effects of main factors and their corresponding relationships were obtained. The results of the statistical analysis show that the decomposition rate of ammonium metavanadate is significantly affected by calcination temperature and calcination time. The optimized calcination conditions are as follows: calcination temperature 669.71 K, calcination time 35.9 min and sample mass 4.25 g. The decomposition rate of ammonium metavanadate is 99.71%,which coincides well with experimental value of 99.27% under the optimized conditions, suggesting that regressive equation fits the decomposition rates perfectly. XRD reveals that it is feasible to prepare the V2O5 by calcination from ammonium metavanadate using response surface methodology. 展开更多
关键词 vanadium pentoxide ammonium metavanadate CALCINATION response surface methodology
下载PDF
INTEGRATION SHAPE AND SIZING OPTIMIZATION OF COMPOSITE WING STRUCTURE BASED ON RESPONSE SURFACE METHOD 被引量:7
14
作者 王伟 杨伟 常楠 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第2期94-100,共7页
An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitabl... An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitable for these integrated shape/sizing optimization is obtained. The uniform design method is used to provide sample points, and approximation models for shape design variables. And the results of sizing optimization are construct- ed with the quadratic response surface method (QRSM). The complex method based on QRSM is used to opti- mize the shape design variables and the criteria method is adopted to optimize the sizing design variables. Compared with the conventional method, the proposed algorithm is more effective and feasible for solving complex composite optimization problems and has good efficiency in weight cutting. 展开更多
关键词 composite structures shape optimization WINGS sizing optimization response surface method
下载PDF
Identification of processing window for extrusion of large thick-walled Inconel 625 alloy pipes using response surface methodology 被引量:5
15
作者 郭良刚 党利 +2 位作者 杨合 张君 郑文达 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1902-1911,共10页
Identifying suitable processing window is necessary but difficult for achieving favorable microstructure and performance in extrusion of large thick-walled pipe with difficult-to-deform Inconel 625 alloy. In this work... Identifying suitable processing window is necessary but difficult for achieving favorable microstructure and performance in extrusion of large thick-walled pipe with difficult-to-deform Inconel 625 alloy. In this work, a method was established for identifying the extrusion process window considering temperature control using response surface methodology. Firstly, the response surface models, which correlate temperature rise and peak temperature to key extrusion parameters, have been developed by orthogonal regression based on finite element calculated data. Secondly, the coupled effects of the key extrusion parameters on the temperature rise and peak temperature have been disclosed based on the regression models. Lastly, suitable extrusion processing windows, which are described by contour map of peak temperature in the space of extrusion speed and initial billet temperature, have been established for different extrusion ratios. Using the identified process window, a suitable combination of the key extrusion parameters can be determined conveniently and quickly. 展开更多
关键词 profile extrusion processing window response surface methodology difficult-to-deform materials finite element simulation
下载PDF
Research on the Extraction Process of Pu-erh Tea Polysaccharide by Response Surface Analysis 被引量:4
16
作者 罗玲 周斌星 +2 位作者 郭威 柴洁 李扬 《Agricultural Science & Technology》 CAS 2013年第3期494-497,共4页
[Objective] This study aimed to optimize the extraction process parameters of Pu-erh tea polysaccharide. [Method] Single-factor experiment was carried out to analyze the influences of three main factors, including ext... [Objective] This study aimed to optimize the extraction process parameters of Pu-erh tea polysaccharide. [Method] Single-factor experiment was carried out to analyze the influences of three main factors, including extraction temperature, ex- traction duration and solid-liquid ratio, on the extraction yield of tea polysaccharide. Box-Behnken central composite design and response surface methodology were adopted to determine the optimal extraction process of Pu-erh tea polysaccharide. [Result] The results of response surface analysis showed that the optimal extraction process was solid-liquid ratio of 1:17, extraction temperature of 80 ℃ and extraction duration of 78.5 min, and the Pu-erh tea polysaccharide yield was 12.72%. [Conclu- sion] Using response surface methodology (RSM) is feasible for the optimization of Pu-erh tea polysaccharide extraction process, and the tea polysaccharide yield increased significantly. 展开更多
关键词 P-erh tea Tea polysaccharide response surface methodology Polysaccharide yield
下载PDF
Response surface optimization of process parameters for removal of F and Cl from zinc oxide fume by microwave roasting 被引量:2
17
作者 李志强 李静 +4 位作者 张利波 彭金辉 王仕兴 马爱元 王宝宝 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第3期973-980,共8页
Microwave was applied to roasting the zinc oxide fume obtained from fuming furnace for the removal of F and Cl. The effects of important parameters, such as roasting temperature, holding time and stirring speed, were ... Microwave was applied to roasting the zinc oxide fume obtained from fuming furnace for the removal of F and Cl. The effects of important parameters, such as roasting temperature, holding time and stirring speed, were investigated and the process conditions were optimized using response surface methodology (RSM). The results show that the effects of roasting temperature and holding time on the removal rate of F and Cl are the most significant, and the effect of stirring speed is the second. The defluorination rate reaches 92.6% while the dechlorination rate reaches 90.2%, under the process conditions of roasting temperature of 700 °C, holding time of 80 min and stirring speed of 120 r/min. The results indicate that the removal of F and Cl from fuming furnace production of zinc oxide fumes using microwave roasting process is feasible and reliable. 展开更多
关键词 zinc oxide fume F CL removal rate microwave roasting response surface methodology
下载PDF
Optimization of Supercritical Carbon dioxide Extraction of Ginger Essential Oil by Response Surface Method 被引量:5
18
作者 雷红 周仁杰 +2 位作者 魏巧年 李晓乐 吴静 《Agricultural Science & Technology》 CAS 2016年第9期2178-2182,共5页
[Objective] Ginger essential oil (GEO) is widely used in food production and medical field in recent years due to its prominent biological functions, and this study was conducted to obtain high-quality and high-puri... [Objective] Ginger essential oil (GEO) is widely used in food production and medical field in recent years due to its prominent biological functions, and this study was conducted to obtain high-quality and high-purity ginger essential oil from the fresh ginger. [Method] GEO was extracted from ginger roots by supercritical fluid extraction (SFE) method. The effects of flow rate of CO2, mesh size of ginger powder and volume of entrainer were investigated by single-factor experiments and response surface method. The content and extraction rate of 6-gingerol represented the extraction index of GEO. [Result] The conditions were optimized as follows: flow rate of CO2 at 25 L/h, mesh size of ginger power of 80 mesh, and volume of anhydrous ethanol as entrainer of 92.46 ml. The optimal extraction rate of 6-gingerol was 3.21%, which was predicted by RSM. [Conclusion] The optimal process of supercritical carbon dioxide extraction of ginger essential oil was identified by singlefactor experiments and response surface method. The present study provides a satisfactory method for purifying GEO from ginger for industrial purpose. 展开更多
关键词 Ginger essential oil (GEO) Supercritical carbon dioxide extraction response surface methodology
下载PDF
Nonlinear dynamical response of high-voltage transmission lines based on cable dropping 被引量:1
19
作者 夏开全 刘云 钱振东 《Journal of Southeast University(English Edition)》 EI CAS 2009年第1期52-56,共5页
In order to study the dynamic response of high-voltage transmission lines under mechanical failure, a finite element model of a domestic 500-kV high-voltage transmission line system is established. The initial equilib... In order to study the dynamic response of high-voltage transmission lines under mechanical failure, a finite element model of a domestic 500-kV high-voltage transmission line system is established. The initial equilibrium condition of the coupling system model is verified by nonlinear static analysis. The transient dynamic analysis method is proposed to analyze the variation law of dynamic response under cable or insulator rupture, and the dynamic response of structural elements next to the broken span is calculated. The results show that upper crossarm cable rupture has no effect on cable tension at adjacent suspension points, but it has a significant influence on tension in the insulator and the tower component of the upper crossarm next to the broken span. The peak tension in the conductor of the upper crossarm at the suspension point exceeds the design value under insulator rupture. Insulator rupture has no effect on the tower component of the upper crossarm, but it has a significant influence on insulator tension of the upper crossarm. Insulator rupture should be taken into account in the design of overhead transmission lines. The research results can provide a theoretical basis for the design of transmission lines. 展开更多
关键词 high-voltage transmission line transient response cable dropping numerical simulation finite element method
下载PDF
SCRAMJET INLET MULTI-OBJECTIVE OPTIMIZATION BASED ON RESPONSE SURFACE METHODOLOGY 被引量:1
20
作者 李健 谷良贤 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第3期205-210,共6页
The uniform design and response surface methodology (RSM) are applied to the multi-objective optimization of a 2-D mixed compression scramjet inlet. The set of experimental design points on the design space is selec... The uniform design and response surface methodology (RSM) are applied to the multi-objective optimization of a 2-D mixed compression scramjet inlet. The set of experimental design points on the design space is selected by the uniform design, and the inlet performance is analyzed by computational fluid dynamics (CFD). Then complete quadratic polynomial response surface approximation models are constructed based on the performance analysis results and then used to replace theoriginal complex inlet performance model. The optimization is conducted using a multi-objective genetic algorithm NSGA-Ⅱ, and the Pareto optimal solution set is obtained. Results show that the uniform design and RSM can reduce the computational complexity of numerical simulation and improve the optimization efficiency. 展开更多
关键词 scramjet inlet response surface methodology oblique shock multi-objective optimization
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部