This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization a...This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization algorithms.Specifically,the study employs the firefly algorithm(FA),a metaheuristic optimization technique,to optimize bucket elevator parameters for maximizing transport mass and mass flow rate discharge of granular materials under specified working conditions.The experimental methodology involves several key steps:screening experiments to identify significant factors affecting bucket elevator operation,central composite design(CCD)experiments to further explore these factors,and response surface methodology(RSM)to create predictive models for transport mass and mass flow rate discharge.The FA algorithm is then applied to optimize these models,and the results are validated through simulation and empirical experiments.The study validates the optimized parameters through simulation and empirical experiments,comparing results with DEM simulation.The outcomes demonstrate the effectiveness of the FA algorithm in identifying optimal bucket parameters,showcasing less than 10%and 15%deviation for transport mass and mass flow rate discharge,respectively,between predicted and actual values.Overall,this research provides insights into the critical factors influencing bucket elevator operation and offers a systematic methodology for optimizing bucket parameters,contributing to more efficient material handling in various industrial applications.展开更多
A proper weapon system is very important for a na- tional defense system. Generally, it means selecting the optimal weapon system among many alternatives, which is a multiple- attribute decision making (MADM) proble...A proper weapon system is very important for a na- tional defense system. Generally, it means selecting the optimal weapon system among many alternatives, which is a multiple- attribute decision making (MADM) problem. This paper proposes a new mathematical model based on the response surface method (RSM) and the grey relational analysis (GRA). RSM is used to obtain the experimental points and analyze the factors that have a significant impact on the selection results. GRA is used to an- alyze the trend relationship between alternatives and reference series. And then an RSM model is obtained, which can be used to calculate all alternatives and obtain ranking results. A real world application is introduced to illustrate the utilization of the model for the weapon selection problem. The results show that this model can be used to help decision-makers to make a quick comparison of alternatives and select a proper weapon system from multiple alternatives, which is an effective and adaptable method for solving the weapon system selection problem.展开更多
In the present work, the response surface method software was used with five measurement levels with three factors.These were applied for the optimization of operating parameters that affected gas separation performan...In the present work, the response surface method software was used with five measurement levels with three factors.These were applied for the optimization of operating parameters that affected gas separation performance of polyurethane–zeolite 3A, ZSM-5 mixed matrix membranes.The basis of the experiments was a rotatable central composite design(CCD).The three independent variables studied were: zeolite content(0–24 wt%), operating temperature(25–45 ℃) and operating pressure(0.2–0.1 MPa).The effects of these three variables on the selectivity and permeability membranes were studied by the analysis of variance(ANOVA).Optimal conditions for the enhancement of gas separation performances of polyurethane–3A zeolite were found to be 18 wt%, 30 ℃ and 0.8 MPa respectively.Under these conditions, the permeabilities of carbon dioxide, methane, oxygen and nitrogen gases were measured at 138.4, 22.9, 15.7 and 6.4 Barrer respectively while the CO_2/CH_4, CO_2/N_2 and O_2/N_2 selectivities were 5.8, 22.5 and 2.5, respectively.Also, the optimal conditions for improvement of the gas separation performance of polyurethane–ZSM 5 were found to be 15.64 wt%, 30 ℃ and 4 bar.The permeabilities of these four gases(i.e.carbon dioxide, methane, oxygen and nitrogen) were 164.7, 21.2, 21.5 and 8.1 Barrer while the CO_2/CH_4, CO_2/N_2 and O_2/N_2 selectivities were 7.8, 20.6 and 2.7 respectively.展开更多
The multi-layer ceramic capacitor (MLCC) alignment system aims at the inter-process automation between the first and the second plastic processes.As a result of testing performance verification of MLCC alignment syste...The multi-layer ceramic capacitor (MLCC) alignment system aims at the inter-process automation between the first and the second plastic processes.As a result of testing performance verification of MLCC alignment system,the average alignment rates are 95% for 3216 chip,88.5% for 2012 chip and 90.8% for 3818 chip.The MLCC alignment system can be accepted for practical use because the average manual alignment is just 80%.In other words,the developed MLCC alignment system has been upgraded to a great extent,compared with manual alignment.Based on the successfully developed MLCC alignment system,the optimal transfer conditions have been explored by using RSM.The simulations using ADAMS has been performed according to the cube model of CCD.By using MiniTAB,the model of response surface has been established based on the simulation results.The optimal conditions resulted from the response optimization tool of MiniTAB has been verified by being assigned to the prototype of MLCC alignment system.展开更多
The methods of modifying dimension and shape of structure, or covering damping material are effective to reduce structure-borne noise, while these methods are based on the knowledge of qualitative and quantitative rel...The methods of modifying dimension and shape of structure, or covering damping material are effective to reduce structure-borne noise, while these methods are based on the knowledge of qualitative and quantitative relationship between sound radiation and design parameters. In order to decrease the complexity of the problem, response surface method(RSM) was utilized to analyze and optimize the vibro-acoustic properties of the damping structure. A simple case was illustrated to demonstrate the capabilities of the developed procedure. A structure-born noise problem was approximated by a series of polynomials using RSM. Three main performances were considered, i.e. sound radiation power, first order modal frequency and total mass. Consequently, the response surface model not only gives the direction of design modification, it also leads to an optimal design of complex systems.展开更多
In this paper,the effects of different influencing factors and factor interaction on the compressive strength and permeability of recycled aggregate pervious concrete(RAPC)were studied based on the response surface me...In this paper,the effects of different influencing factors and factor interaction on the compressive strength and permeability of recycled aggregate pervious concrete(RAPC)were studied based on the response surface method(RSM).By selecting the maximum aggregate size,water cement ratio and target porosity as design variables,combined with laboratory tests and numerical analysis,the influences of three factors on the compressive strength and permeability coefficient of RAPC were revealed.The regression equation of compressive strength and permeability coefficient of recycled aggregate pervious concrete were established based on RSM,and the response surface model was optimized to determine the optimal ratio of RAPC under the conditions of meeting the mechanical and permeability properties.The results show that the mismatch item of the model is not significant,the model is credible,and the accuracy and reliability of the test are high,but the degree of uncorrelation between the test data and the model is not obvious.The sensitivity of the three factors to the compressive strength is water cement ratio>maximum coarse aggregate particle size>target porosity,and the sensitivity to the permeability coefficient is target porosity>maximum coarse aggregate particle size>water cement ratio.The absolute errors of the model prediction results and the model optimization results are 1.28 MPa and 0.19 mm/s,and the relative errors are 5.06%and 4.19%,respectively.With high accuracy,RSM can match the measured results of compressive strength and permeability coefficient of RAPC.展开更多
In the presented study, the laser butt-welding of Ti 6Al 4V is investigated using 2.2 kw CO2 laser. Ti 6Al 4V alloy has widespread application in various fields of industries including the medical, nuclear and aerospa...In the presented study, the laser butt-welding of Ti 6Al 4V is investigated using 2.2 kw CO2 laser. Ti 6Al 4V alloy has widespread application in various fields of industries including the medical, nuclear and aerospace. In this study, Response Surface Methodology (RSM) is employed to establish the design of experiments and to optimize the bead geometry. The relationships between the input laser-welding parameters (i.e. laser power, welding speed and focal point position) and the process responses (i.e. welded zone width, heat affected zone width, welded zone area, heat affected zone area and penetration depth) are investigated. The multi-response optimizations are used to optimize the welding process. The optimum welding conditions are identified in order to increase the productivity and minimize the total operating cost. The validation results demonstrate that the developed models are accurate with low percentages of error (less than 12.5%).展开更多
Slope reliability analysis considering inherent spatial variability(ISV)of soil properties is timeconsuming when response surface method(RSM)is used,because of the"curse of dimensionality".This paper propose...Slope reliability analysis considering inherent spatial variability(ISV)of soil properties is timeconsuming when response surface method(RSM)is used,because of the"curse of dimensionality".This paper proposes an effective method for identification of representative slip surfaces(RSSs)of slopes with spatially varied soils within the framework of limit equilibrium method(LEM),which utilizes an adaptive K-means clustering approach.Then,an improved slope reliability analysis based on the RSSs and RSM considering soil spatial variability,in perspective of computation efficiency,is established.The detailed implementation procedure of the proposed method is well documented,and the ability of the method in identifying RSSs and estimating reliability is investigated via three slope examples.Results show that the proposed method can automatically identify the RSSs of slope with only one evaluation of the conventional deterministic slope stability model.The RSSs are invariant with the statistics of soil properties,which allows parametric studies that are often required in slope reliability analysis to be efficiently achieved with ease.It is also found that the proposed method provides comparable values of factor of safety(FS)and probability of failure(Pf)of slopes with those obtained from direct analysis and lite rature.展开更多
The aim of this study was to design and construct an improved response surface method(RSM) based on weighted regression for the anti-slide reliability analysis of concrete gravity dam.The limitation and lacuna of the ...The aim of this study was to design and construct an improved response surface method(RSM) based on weighted regression for the anti-slide reliability analysis of concrete gravity dam.The limitation and lacuna of the traditional RSM were briefly analyzed.Firstly,based on small experimental points,research was devoted to an improved RSM with singular value decomposition techniques.Then,the method was used on the basis of weighted regression and deviation coefficient correction to reduce iteration times and experimental points and improve the calculation method of checking point.Finally,a test example was given to verify this method.Compared with other conventional algorithms,this method has some strong advantages:this algorithm not only saves the arithmetic operations but also greatly enhances the calculation efficiency and the storage efficiency.展开更多
This paper presents the results from using a physical absorption process to absorb gaseous CO2mixed with N2using water by producing tiny bubbles via a liquid-film-forming device(LFFD)that improves the solubility of ...This paper presents the results from using a physical absorption process to absorb gaseous CO2mixed with N2using water by producing tiny bubbles via a liquid-film-forming device(LFFD)that improves the solubility of CO2in water.The influence of various parameters—pressure,initial CO2concentration,gas-to-liquid ratios,and temperature—on the CO2removal efficiency and its absorption rate in water were investigated and estimated thoroughly by statistical polynomial models obtained by the utilization of the response surface method(RSM)with a central composite design(CCD).Based on the analysis,a high efficiency of CO2capture can be reached in conditions such as low pressure,high CO2concentration at the inlet,low gas/liquid ratio,and low temperature.For instance,the highest removal efficiency in the RSM–CCD experimental matrix of nearly 80%occurred for run number 20,which was conducted at 0.30 MPa,CO2concentration of 35%,gas/liquid ratio of 0.71,and temperature of 15℃.Furthermore,the coefficients of determination,R^2,were 0.996 for the removal rate and 0.982 for the absorption rate,implying that the predicted values computed by the constructed models correlate strongly and fit well with the experimental values.The results obtained provide essential information for implementing this method properly and effectively and contribute a promising approach to the problem of CO2capture in air pollution treatment.展开更多
The surface-mounted and interior permanent magnet synchronous motor(SIPMSM)has the characteristics of multiple variables,strong coupling and nonlinearity.In order to improve the performance of SIPMSM,this paper presen...The surface-mounted and interior permanent magnet synchronous motor(SIPMSM)has the characteristics of multiple variables,strong coupling and nonlinearity.In order to improve the performance of SIPMSM,this paper presents a multi-objective optimal design process using Taguchi and response surface methodology(RSM).The peak value of cogging torque(PVCT),ratio value of average torque and permanent magnet weight(RTW),torque ripple and back-EMF total harmonics distortion(ETHD)are selected as optimization goals.The experiment matrix is established by Taguchi method,and analyzed the tendency and proportion of the effect of the optimization parameters on SIPMSM performance.The rules of choosing multi-objective optimization parameters are obtained.The least-squares method is used to establish the optimal objective function,and RSM is used to obtain the resolutions of the optimization objective function.Comparing the initial performance with optimized performance verifies the effectiveness of the proposed method.展开更多
生产高质量的钛合金叶片设计是关键。提出了将响应面法(ResponseSurfaceMethod,RSM)和数值模拟(Finite element method,FEM)相结合以优化叶片类锻件用坯料的方法,详细描述了该方法的求解过程,构造了表征叶片各部分应变和温度均匀性的函...生产高质量的钛合金叶片设计是关键。提出了将响应面法(ResponseSurfaceMethod,RSM)和数值模拟(Finite element method,FEM)相结合以优化叶片类锻件用坯料的方法,详细描述了该方法的求解过程,构造了表征叶片各部分应变和温度均匀性的函数。将此方法应用于带阻尼台的钛合金风扇叶片预成形坯料的优化,确定出了最优坯料的形状。用该方法确定出的最优坯料能得到满意的成形效果和组织均匀性。展开更多
基金This research was funded by the Faculty of Engineering,King Mongkut’s University of Technology North Bangkok.Contract No.ENG-NEW-66-39.
文摘This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization algorithms.Specifically,the study employs the firefly algorithm(FA),a metaheuristic optimization technique,to optimize bucket elevator parameters for maximizing transport mass and mass flow rate discharge of granular materials under specified working conditions.The experimental methodology involves several key steps:screening experiments to identify significant factors affecting bucket elevator operation,central composite design(CCD)experiments to further explore these factors,and response surface methodology(RSM)to create predictive models for transport mass and mass flow rate discharge.The FA algorithm is then applied to optimize these models,and the results are validated through simulation and empirical experiments.The study validates the optimized parameters through simulation and empirical experiments,comparing results with DEM simulation.The outcomes demonstrate the effectiveness of the FA algorithm in identifying optimal bucket parameters,showcasing less than 10%and 15%deviation for transport mass and mass flow rate discharge,respectively,between predicted and actual values.Overall,this research provides insights into the critical factors influencing bucket elevator operation and offers a systematic methodology for optimizing bucket parameters,contributing to more efficient material handling in various industrial applications.
基金supported by the National Natural Science Foundation of China(51375389)
文摘A proper weapon system is very important for a na- tional defense system. Generally, it means selecting the optimal weapon system among many alternatives, which is a multiple- attribute decision making (MADM) problem. This paper proposes a new mathematical model based on the response surface method (RSM) and the grey relational analysis (GRA). RSM is used to obtain the experimental points and analyze the factors that have a significant impact on the selection results. GRA is used to an- alyze the trend relationship between alternatives and reference series. And then an RSM model is obtained, which can be used to calculate all alternatives and obtain ranking results. A real world application is introduced to illustrate the utilization of the model for the weapon selection problem. The results show that this model can be used to help decision-makers to make a quick comparison of alternatives and select a proper weapon system from multiple alternatives, which is an effective and adaptable method for solving the weapon system selection problem.
文摘In the present work, the response surface method software was used with five measurement levels with three factors.These were applied for the optimization of operating parameters that affected gas separation performance of polyurethane–zeolite 3A, ZSM-5 mixed matrix membranes.The basis of the experiments was a rotatable central composite design(CCD).The three independent variables studied were: zeolite content(0–24 wt%), operating temperature(25–45 ℃) and operating pressure(0.2–0.1 MPa).The effects of these three variables on the selectivity and permeability membranes were studied by the analysis of variance(ANOVA).Optimal conditions for the enhancement of gas separation performances of polyurethane–3A zeolite were found to be 18 wt%, 30 ℃ and 0.8 MPa respectively.Under these conditions, the permeabilities of carbon dioxide, methane, oxygen and nitrogen gases were measured at 138.4, 22.9, 15.7 and 6.4 Barrer respectively while the CO_2/CH_4, CO_2/N_2 and O_2/N_2 selectivities were 5.8, 22.5 and 2.5, respectively.Also, the optimal conditions for improvement of the gas separation performance of polyurethane–ZSM 5 were found to be 15.64 wt%, 30 ℃ and 4 bar.The permeabilities of these four gases(i.e.carbon dioxide, methane, oxygen and nitrogen) were 164.7, 21.2, 21.5 and 8.1 Barrer while the CO_2/CH_4, CO_2/N_2 and O_2/N_2 selectivities were 7.8, 20.6 and 2.7 respectively.
基金supported by the Second Stage of Brain Korea 21 Projectssupported (in part) by the Solomon Mechanics Inc
文摘The multi-layer ceramic capacitor (MLCC) alignment system aims at the inter-process automation between the first and the second plastic processes.As a result of testing performance verification of MLCC alignment system,the average alignment rates are 95% for 3216 chip,88.5% for 2012 chip and 90.8% for 3818 chip.The MLCC alignment system can be accepted for practical use because the average manual alignment is just 80%.In other words,the developed MLCC alignment system has been upgraded to a great extent,compared with manual alignment.Based on the successfully developed MLCC alignment system,the optimal transfer conditions have been explored by using RSM.The simulations using ADAMS has been performed according to the cube model of CCD.By using MiniTAB,the model of response surface has been established based on the simulation results.The optimal conditions resulted from the response optimization tool of MiniTAB has been verified by being assigned to the prototype of MLCC alignment system.
文摘The methods of modifying dimension and shape of structure, or covering damping material are effective to reduce structure-borne noise, while these methods are based on the knowledge of qualitative and quantitative relationship between sound radiation and design parameters. In order to decrease the complexity of the problem, response surface method(RSM) was utilized to analyze and optimize the vibro-acoustic properties of the damping structure. A simple case was illustrated to demonstrate the capabilities of the developed procedure. A structure-born noise problem was approximated by a series of polynomials using RSM. Three main performances were considered, i.e. sound radiation power, first order modal frequency and total mass. Consequently, the response surface model not only gives the direction of design modification, it also leads to an optimal design of complex systems.
基金supported by the Jiangsu Water Conservancy Science and Technology Project of China(2016036).
文摘In this paper,the effects of different influencing factors and factor interaction on the compressive strength and permeability of recycled aggregate pervious concrete(RAPC)were studied based on the response surface method(RSM).By selecting the maximum aggregate size,water cement ratio and target porosity as design variables,combined with laboratory tests and numerical analysis,the influences of three factors on the compressive strength and permeability coefficient of RAPC were revealed.The regression equation of compressive strength and permeability coefficient of recycled aggregate pervious concrete were established based on RSM,and the response surface model was optimized to determine the optimal ratio of RAPC under the conditions of meeting the mechanical and permeability properties.The results show that the mismatch item of the model is not significant,the model is credible,and the accuracy and reliability of the test are high,but the degree of uncorrelation between the test data and the model is not obvious.The sensitivity of the three factors to the compressive strength is water cement ratio>maximum coarse aggregate particle size>target porosity,and the sensitivity to the permeability coefficient is target porosity>maximum coarse aggregate particle size>water cement ratio.The absolute errors of the model prediction results and the model optimization results are 1.28 MPa and 0.19 mm/s,and the relative errors are 5.06%and 4.19%,respectively.With high accuracy,RSM can match the measured results of compressive strength and permeability coefficient of RAPC.
文摘In the presented study, the laser butt-welding of Ti 6Al 4V is investigated using 2.2 kw CO2 laser. Ti 6Al 4V alloy has widespread application in various fields of industries including the medical, nuclear and aerospace. In this study, Response Surface Methodology (RSM) is employed to establish the design of experiments and to optimize the bead geometry. The relationships between the input laser-welding parameters (i.e. laser power, welding speed and focal point position) and the process responses (i.e. welded zone width, heat affected zone width, welded zone area, heat affected zone area and penetration depth) are investigated. The multi-response optimizations are used to optimize the welding process. The optimum welding conditions are identified in order to increase the productivity and minimize the total operating cost. The validation results demonstrate that the developed models are accurate with low percentages of error (less than 12.5%).
基金The work described in this paper was nancially supported by the Natural Science Foundation of China(Grant Nos.51709258,51979270 and 41902291),the CAS Pioneer Hundred Talents Pro-gram and the Research Foundation of Key Laboratory of Deep Geodrilling Technology,Ministry of Land and Resources,China(Grant No.F201801).
文摘Slope reliability analysis considering inherent spatial variability(ISV)of soil properties is timeconsuming when response surface method(RSM)is used,because of the"curse of dimensionality".This paper proposes an effective method for identification of representative slip surfaces(RSSs)of slopes with spatially varied soils within the framework of limit equilibrium method(LEM),which utilizes an adaptive K-means clustering approach.Then,an improved slope reliability analysis based on the RSSs and RSM considering soil spatial variability,in perspective of computation efficiency,is established.The detailed implementation procedure of the proposed method is well documented,and the ability of the method in identifying RSSs and estimating reliability is investigated via three slope examples.Results show that the proposed method can automatically identify the RSSs of slope with only one evaluation of the conventional deterministic slope stability model.The RSSs are invariant with the statistics of soil properties,which allows parametric studies that are often required in slope reliability analysis to be efficiently achieved with ease.It is also found that the proposed method provides comparable values of factor of safety(FS)and probability of failure(Pf)of slopes with those obtained from direct analysis and lite rature.
基金supported by the National Basic Research Program of China (Nos. 2007CB714107 and 90510018)the Trans-Century Training Programme Foundation for the Talents by the State Education Com-mission (No. NCET-06-0270),China
文摘The aim of this study was to design and construct an improved response surface method(RSM) based on weighted regression for the anti-slide reliability analysis of concrete gravity dam.The limitation and lacuna of the traditional RSM were briefly analyzed.Firstly,based on small experimental points,research was devoted to an improved RSM with singular value decomposition techniques.Then,the method was used on the basis of weighted regression and deviation coefficient correction to reduce iteration times and experimental points and improve the calculation method of checking point.Finally,a test example was given to verify this method.Compared with other conventional algorithms,this method has some strong advantages:this algorithm not only saves the arithmetic operations but also greatly enhances the calculation efficiency and the storage efficiency.
基金the support of the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT – Monbukagakusho Scholarship)Yashima Environment Technology Foundation
文摘This paper presents the results from using a physical absorption process to absorb gaseous CO2mixed with N2using water by producing tiny bubbles via a liquid-film-forming device(LFFD)that improves the solubility of CO2in water.The influence of various parameters—pressure,initial CO2concentration,gas-to-liquid ratios,and temperature—on the CO2removal efficiency and its absorption rate in water were investigated and estimated thoroughly by statistical polynomial models obtained by the utilization of the response surface method(RSM)with a central composite design(CCD).Based on the analysis,a high efficiency of CO2capture can be reached in conditions such as low pressure,high CO2concentration at the inlet,low gas/liquid ratio,and low temperature.For instance,the highest removal efficiency in the RSM–CCD experimental matrix of nearly 80%occurred for run number 20,which was conducted at 0.30 MPa,CO2concentration of 35%,gas/liquid ratio of 0.71,and temperature of 15℃.Furthermore,the coefficients of determination,R^2,were 0.996 for the removal rate and 0.982 for the absorption rate,implying that the predicted values computed by the constructed models correlate strongly and fit well with the experimental values.The results obtained provide essential information for implementing this method properly and effectively and contribute a promising approach to the problem of CO2capture in air pollution treatment.
基金Supported by National Natural Science Foundation of China(U1361109,51777060)Natural Science Foundation of Henan province(162300410117).
文摘The surface-mounted and interior permanent magnet synchronous motor(SIPMSM)has the characteristics of multiple variables,strong coupling and nonlinearity.In order to improve the performance of SIPMSM,this paper presents a multi-objective optimal design process using Taguchi and response surface methodology(RSM).The peak value of cogging torque(PVCT),ratio value of average torque and permanent magnet weight(RTW),torque ripple and back-EMF total harmonics distortion(ETHD)are selected as optimization goals.The experiment matrix is established by Taguchi method,and analyzed the tendency and proportion of the effect of the optimization parameters on SIPMSM performance.The rules of choosing multi-objective optimization parameters are obtained.The least-squares method is used to establish the optimal objective function,and RSM is used to obtain the resolutions of the optimization objective function.Comparing the initial performance with optimized performance verifies the effectiveness of the proposed method.
文摘生产高质量的钛合金叶片设计是关键。提出了将响应面法(ResponseSurfaceMethod,RSM)和数值模拟(Finite element method,FEM)相结合以优化叶片类锻件用坯料的方法,详细描述了该方法的求解过程,构造了表征叶片各部分应变和温度均匀性的函数。将此方法应用于带阻尼台的钛合金风扇叶片预成形坯料的优化,确定出了最优坯料的形状。用该方法确定出的最优坯料能得到满意的成形效果和组织均匀性。