期刊文献+
共找到34,749篇文章
< 1 2 250 >
每页显示 20 50 100
Optimization of Preparation of Oregano Oil Microspheres by Box-Behnken Response Surface Methodology
1
作者 Fei HAN Mengyao TU +5 位作者 Hui YANG Hekun DUAN Fuhao HU Xinli LIANG Yang GUAN Wei XU 《Medicinal Plant》 2024年第4期40-45,共6页
[Objectives]To optimize the formulation and preparation of oregano oil microspheres by Box-Behnken response surface methodology.[Methods]Chitosan was used as the carrier material to prepare oregano oil microspheres by... [Objectives]To optimize the formulation and preparation of oregano oil microspheres by Box-Behnken response surface methodology.[Methods]Chitosan was used as the carrier material to prepare oregano oil microspheres by emulsion crosslinking method.The encapsulation efficiency,drug loading and ID 50 were used as the evaluation indicators,and the comprehensive score(OD)obtained by"coefficient of variation-AHP comprehensive weighting method"was used as the final evaluation indicator.The formulation design and preparation process were optimized by single factor experiment and Box-Behnken response surface methodology,and the optimal process parameters were determined.[Results]The optimal formulation and preparation process parameters of oregano oil microspheres were as follows:the ratio of oregano oil to chitosan was 2∶1,the emulsifying speed of double emulsion was 200 r/min,the amount of emulsifier in the colostrum was 4%,and the volume of curing agent was 1.0 mL.The average encapsulation efficiency was 45.33%±1.32%,the average drug loading was 30.59%±2.45%,and the median diameter(ID 50)was 52.596μm±0.023%.[Conclusions]The encapsulation efficiency,drug loading and ID 50 of oregano oil chitosan microspheres prepared by emulsion crosslinking method met the requirements.The drug-loaded microsphere not only can be used as a preparation finished product for direct application,but also be used as a product intermediate to lay a foundation for the research and development of subsequent dosage forms. 展开更多
关键词 Oregano oil CHITOSAN MICROSPHERES PREPARATION response surface methodology(RSM)
下载PDF
Optimization of Methylene Blue Dye Adsorption onto Coconut Husk Cellulose Using Response Surface Methodology: Adsorption Kinetics, Isotherms and Reusability Studies
2
作者 Frank Ouru Omwoyo Geoffrey Otieno 《Journal of Materials Science and Chemical Engineering》 2024年第2期1-18,共18页
In this study, coconut husk cellulose was employed as a cost-effective and environmentally friendly adsorbent to eliminate methylene blue (MB) dye from aqueous solutions. The successful development of response surface... In this study, coconut husk cellulose was employed as a cost-effective and environmentally friendly adsorbent to eliminate methylene blue (MB) dye from aqueous solutions. The successful development of response surface methodology paired with a central composite design (RSM-CCD) enabled the optimization and modelling of the adsorption process. The study investigated the individual and combined effects of three variables (pH, contact time, and initial MB dye concentration) on the adsorption of MB dye onto coconut husk cellulose. The developed RSM-CCD model exhibited a remarkable degree of precision in predicting the removal efficiency of MB dye within the specified experimental parameters. This was demonstrated by the strong regression parameters, with an R<sup>2</sup> value of 99.79% and an adjusted R<sup>2</sup> value of 99.6%. The study depicted that the optimal parameters for attaining a 98.8827% removal of MB dye using coconut husk cellulose were as follows: an initial MB dye concentration of 30 mg∙L<sup>−1</sup>, contact time of 120 minutes, and pH 7 at a fixed adsorbent dose of 0.5 g. The Freundlich isotherm model provided the most satisfactory description of the equilibrium adsorption isotherms, suggesting that MB dye adsorption onto coconut husk cellulose occurs on a heterogeneous surface. The experimental results demonstrated a strong agreement with the pseudo-second-order kinetics model, indicating that the number of active sites present on the cellulose adsorbent predominantly influences the adsorption process of MB dye. Additionally, the adsorbent made from coconut husk cellulose exhibited the potential to be reused, as it retained its efficiency for a maximum of three cycles of adsorption of MB dye. The results of this study show that coconut husk cellulose has the potential to be an effective and sustainable adsorbent for removing MB dye from aqueous solutions. 展开更多
关键词 Adsorption Kinetics Isotherms optimization response surface Methodology CELLULOSE
下载PDF
Optimization of Cellulose Nanocrystal Isolation from Ayous Sawdust Using Response Surface Methodology
3
作者 Tchigo Alifa Hamida Aminatou +1 位作者 Oumar Said Jean-Bosco Tchatchueng 《Journal of Materials Science and Chemical Engineering》 2024年第1期36-55,共20页
This study focuses on the extraction of cellulose nanocrystals (CNC), from microcrystalline cellulose (MCC), derived from Ayous sawdust. The process involves multiple steps and a large amount of chemical products. The... This study focuses on the extraction of cellulose nanocrystals (CNC), from microcrystalline cellulose (MCC), derived from Ayous sawdust. The process involves multiple steps and a large amount of chemical products. The objective of this research was to determine the effects of factors that impact the isolation process and to identify the optimal conditions for CNC isolation by using the response surface methodology. The factors that varied during the process were the quantity of MCC, the concentration of sulfuric acid, the hydrolysis time and temperature, and the ultrasonic treatment time. The response measured was the yield. The study found that with 5.80 g of microcrystalline cellulose, a sulfuric acid concentration of 63.50% (w/w), a hydrolysis time of 53 minutes, a hydrolysis temperature of 69˚C, and a sonication time of 19 minutes are the ideal conditions for isolation. The experimental yield achieved was (37.84 ± 0.99) %. The main factors influencing the process were the sulfuric acid concentration, hydrolysis time and temperature, with a significant influence (p < 0.05). Infrared characterization results showed that nanocrystals were indeed isolated. With a crystallinity of 35.23 and 79.74, respectively, for Ayous wood fiber and nanocrystalline cellulose were observed by X-ray diffraction, with the formation of type II cellulose, thermodynamically more stable than native cellulose type I. 展开更多
关键词 Ayous Sawdust Lignocellulosic Waste ISOLATION Cellulose Nanocrystals optimization response surface Methodology
下载PDF
Cooperative User-Scheduling and Resource Allocation Optimization for Intelligent Reflecting Surface Enhanced LEO Satellite Communication
4
作者 Meng Meng Bo Hu +1 位作者 Shanzhi Chen Jianyin Zhang 《China Communications》 SCIE CSCD 2024年第2期227-244,共18页
Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO sate... Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO satellite communication system cannot meet the requirements of users when the satellite-terrestrial link is blocked by obstacles. To solve this problem, we introduce Intelligent reflect surface(IRS) for improving the achievable rate of terrestrial users in LEO satellite communication. We investigated joint IRS scheduling, user scheduling, power and bandwidth allocation(JIRPB) optimization algorithm for improving LEO satellite system throughput.The optimization problem of joint user scheduling and resource allocation is formulated as a non-convex optimization problem. To cope with this problem, the nonconvex optimization problem is divided into resource allocation optimization sub-problem and scheduling optimization sub-problem firstly. Second, we optimize the resource allocation sub-problem via alternating direction multiplier method(ADMM) and scheduling sub-problem via Lagrangian dual method repeatedly.Third, we prove that the proposed resource allocation algorithm based ADMM approaches sublinear convergence theoretically. Finally, we demonstrate that the proposed JIRPB optimization algorithm improves the LEO satellite communication system throughput. 展开更多
关键词 convex optimization intelligent reflecting surface LEO satellite communication OFDM
下载PDF
A novel triple periodic minimal surface-like plate lattice and its data-driven optimization method for superior mechanical properties
5
作者 Yanda WANG Yanping LIAN +2 位作者 Zhidong WANG Chunpeng WANG Daining FANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期217-238,共22页
Lattice structures can be designed to achieve unique mechanical properties and have attracted increasing attention for applications in high-end industrial equipment,along with the advances in additive manufacturing(AM... Lattice structures can be designed to achieve unique mechanical properties and have attracted increasing attention for applications in high-end industrial equipment,along with the advances in additive manufacturing(AM)technologies.In this work,a novel design of plate lattice structures described by a parametric model is proposed to enrich the design space of plate lattice structures with high connectivity suitable for AM processes.The parametric model takes the basic unit of the triple periodic minimal surface(TPMS)lattice as a skeleton and adopts a set of generation parameters to determine the plate lattice structure with different topologies,which takes the advantages of both plate lattices for superior specific mechanical properties and TPMS lattices for high connectivity,and therefore is referred to as a TPMS-like plate lattice(TLPL).Furthermore,a data-driven shape optimization method is proposed to optimize the TLPL structure for maximum mechanical properties with or without the isotropic constraints.In this method,the genetic algorithm for the optimization is utilized for global search capability,and an artificial neural network(ANN)model for individual fitness estimation is integrated for high efficiency.A set of optimized TLPLs at different relative densities are experimentally validated by the selective laser melting(SLM)fabricated samples.It is confirmed that the optimized TLPLs could achieve elastic isotropy and have superior stiffness over other isotropic lattice structures. 展开更多
关键词 lattice structure triple periodic minimal surface(TPMS) plate lattice structural optimization machine learning
下载PDF
The Influence of Tartaric Acid in the Silver Nanoparticle Synthesis Using Response Surface Methodology
6
作者 Yatim Lailun Ni’mah Afaf Baktir +1 位作者 Dewi Santosaningsih Suprapto Suprapto 《Journal of Renewable Materials》 EI CAS 2024年第2期245-258,共14页
Silver nanoparticles(AgNPs)synthesized using tartaric acid as a capping agent have a great impact on the reaction kinetics and contribute significantly to the stability of AgNPs.The protective layer formed by tartaric... Silver nanoparticles(AgNPs)synthesized using tartaric acid as a capping agent have a great impact on the reaction kinetics and contribute significantly to the stability of AgNPs.The protective layer formed by tartaric acid is an important factor that protects the silver surface and reduces potential cytotoxicity problems.These attributes are critical for assessing the compatibility of AgNPs with biological systems and making them suitable for drug delivery applications.The aim of this research is to conduct a comprehensive study of the effect of tartaric acid concentration,sonication time and temperature on the formation of silver nanoparticles.Using Response Surface Methodology(RSM)with Face-Centered Central Composite Design(FCCD),the optimization process identifies the most favorable synthesis conditions.UV-Vis spectrum regression analysis shows that AgNPs stabilized with tartaric acid are more stable than AgNPs without tartaric acid.This highlights the increased stability that tartaric acid provides in AgNP ssssynthesis.Particle size distribution analysis showed a multimodal distribution for AgNPs with tartaric acid and showed the smallest size peak with an average size of 20.53 nm.The second peak with increasing intensity shows a dominant average size of 108.8 nm accompanied by one standard deviation of 4.225 nm and a zeta potential of−11.08 mV.In contrast,AgNPs synthesized with polyvinylpyrrolidone(PVP)showed a unimodal particle distribution with an average particle size of 81.62 nm and a zeta potential of−2.96 mV.The more negative zeta potential of AgNP-tartaric acid indicates its increased stability.Evaluation of antibacterial activity showed that AgNPs stabilized with tartaric acid showed better performance against E.coli and B.subtilis bacteria compared with AgNPs-PVP.In summary,this study highlights the potential of tartaric acid in AgNP synthesis and suggests an avenue for the development of stable AgNPs with versatile applications. 展开更多
关键词 Tartaric acid silver nanoparticle polyvinyl pyrrolidone response surface methodology
下载PDF
Intelligent Reflecting Surface Assisted Transmission Optimization Strategies in Wireless Networks
7
作者 He Xinxin Qi Xuan +2 位作者 Meng Wei Liu Wei Yin Changchuan 《China Communications》 SCIE CSCD 2024年第4期120-135,共16页
Wireless Power Transfer(WPT)technology can provide real-time power for many terminal devices in Internet of Things(IoT)through millimeterWave(mmWave)to support applications with large capacity and low latency.Although... Wireless Power Transfer(WPT)technology can provide real-time power for many terminal devices in Internet of Things(IoT)through millimeterWave(mmWave)to support applications with large capacity and low latency.Although the intelligent reflecting surface(IRS)can be adopted to create effective virtual links to address the mmWave blockage problem,the conventional solutions only adopt IRS in the downlink from the Base Station(BS)to the users to enhance the received signal strength.In practice,the reflection of IRS is also applicable to the uplink to improve the spectral efficiency.It is a challenging to jointly optimize IRS beamforming and system resource allocation for wireless energy acquisition and information transmission.In this paper,we first design a Low-Energy Adaptive Clustering Hierarchy(LEACH)clustering protocol for clustering and data collection.Then,the problem of maximizing the minimum system spectral efficiency is constructed by jointly optimizing the transmit power of sensor devices,the uplink and downlink transmission times,the active beamforming at the BS,and the IRS dynamic beamforming.To solve this non-convex optimization problem,we propose an alternating optimization(AO)-based joint solution algorithm.Simulation results show that the use of IRS dynamic beamforming can significantly improve the spectral efficiency of the system,and ensure the reliability of equipment communication and the sustainability of energy supply under NLOS link. 展开更多
关键词 intelligent reflecting surface(IRS) joint optimization millimeter wave wireless information transmission(WIT) wireless power transfer(WPT)
下载PDF
Optimization of Photo-Fenton Catalyst Preparation Based Bamboo Carbon Fiber by Response Surface Methodology
8
作者 Yizhang Wang Zhaoyang Yu +5 位作者 Jinbo Hu Shanshan Chang Yuan Liu Ting Li Gonggang Liu Xiaodong(Alice)Wang 《Journal of Renewable Materials》 SCIE EI 2023年第1期147-165,共19页
In this paper,the residue from bamboo factory has been used to design photo-Fenton catalyst,which has the advantages of low cost and magnetic recycling.The photo-Fenton catalytic performance of the biocarbon-based cat... In this paper,the residue from bamboo factory has been used to design photo-Fenton catalyst,which has the advantages of low cost and magnetic recycling.The photo-Fenton catalytic performance of the biocarbon-based catalyst was excellent and its optimal preparation process was also explored by response surface methodology.First,bamboo-carbon fiber was selected as the photo-Fenton catalyst carrier.Subsequently,the surface of the car-bon fiber was modified,with which dopamine,nano-Fe_(3)O_(4) and nano-TiO_(2) were successively loaded by hydro-thermal method.After the single factor tests,four factors including dopamine concentration,ferric chloride mass,P25 titanium dioxide mass and liquid-solid ratio were selected as the characteristic values.The degradation efficiency of photo-Fenton catalyst to methylene blue(MB)solution was treated as the response value.After the analysis of the response surface optimization,it was shown that the significance sequence of the selected 4 factors in terms of the MB degradation efficiency was arranged as follows:dopamine concentration>liquid-solid ratio>P25 titanium dioxide quality>ferric chloride quality.The optimal process parameters of fiber-carbon catalyst were affirmed as follows:the 1.7 mg/mL concentration of dopamine,the 1.2 g mass of ferric chloride,the 0.2 g mass of P25 titanium dioxide and the liquid-solid ratio of 170 mL/g.The experiment-measured average MB degra-dation efficiency performed by the optimized catalyst was 99.3%,which was nearly similar to the model-predicted value of 98.9%.It showed that the prediction model and response surface model were accurate and reliable.The results from response surface optimization could provide a good reference to design bamboo-based Fenton-like catalyst with excellent catalytic performance. 展开更多
关键词 Photo-fenton catalysis bamboo fiber carbon fiber response surface optimization methylene blue
下载PDF
Response Surface Optimization of Ultrasound-assisted Aqueous Two-phase Extraction of Sweet Potato Leaf Polysaccharides
9
作者 Yuxuan WU Junqing WANG Wenjie WANG 《Agricultural Biotechnology》 CAS 2023年第3期106-112,共7页
[Objectives]The ultrasound-assisted aqueous two-phase extraction of sweet potato leaf polysaccharides was studied.[Methods]With the yield of sweet potato leaf polysaccharides as the index,the aqueous two-phase extract... [Objectives]The ultrasound-assisted aqueous two-phase extraction of sweet potato leaf polysaccharides was studied.[Methods]With the yield of sweet potato leaf polysaccharides as the index,the aqueous two-phase extraction system was determined,and the optimal extraction conditions were optimized by single-factor experiments and response surface methodology.[Results]The optimal parameters were ethanol concentration 25.68%,liquid-to-material ratio 55.83,and ultrasonic treatment time 38.33 min.Under these conditions,the yield of sweet potato leaf polysaccharides could reach 20.646 mg/g.[Conclusions]The ethanol/ammonium sulfate aqueous system is a rapid and efficient method for extracting sweet potato leaf polysaccharides,which is of great significance for the application of sweet potato leaf extract as a natural food additive. 展开更多
关键词 Aqueous two-phase system Ultrasound assistance response surface optimization Sweet potato leaf polysaccharides
下载PDF
Mechanical and Permeability Analysis and Optimization of Recycled Aggregate Pervious Concrete Based on Response Surface Method
10
作者 Fan Li Xin Cai +2 位作者 Yanan Zhang Xingwen Guo Minmin Jiang 《Journal of Renewable Materials》 SCIE EI 2023年第4期1745-1762,共18页
In this paper,the effects of different influencing factors and factor interaction on the compressive strength and permeability of recycled aggregate pervious concrete(RAPC)were studied based on the response surface me... In this paper,the effects of different influencing factors and factor interaction on the compressive strength and permeability of recycled aggregate pervious concrete(RAPC)were studied based on the response surface method(RSM).By selecting the maximum aggregate size,water cement ratio and target porosity as design variables,combined with laboratory tests and numerical analysis,the influences of three factors on the compressive strength and permeability coefficient of RAPC were revealed.The regression equation of compressive strength and permeability coefficient of recycled aggregate pervious concrete were established based on RSM,and the response surface model was optimized to determine the optimal ratio of RAPC under the conditions of meeting the mechanical and permeability properties.The results show that the mismatch item of the model is not significant,the model is credible,and the accuracy and reliability of the test are high,but the degree of uncorrelation between the test data and the model is not obvious.The sensitivity of the three factors to the compressive strength is water cement ratio>maximum coarse aggregate particle size>target porosity,and the sensitivity to the permeability coefficient is target porosity>maximum coarse aggregate particle size>water cement ratio.The absolute errors of the model prediction results and the model optimization results are 1.28 MPa and 0.19 mm/s,and the relative errors are 5.06%and 4.19%,respectively.With high accuracy,RSM can match the measured results of compressive strength and permeability coefficient of RAPC. 展开更多
关键词 Recycled aggregate pervious concrete(RAPC) response surface method(RSM) MECHANICAL PERMEABILITY optimization
下载PDF
Response Surface Methodology as an Approach for Optimization of Vinegar Fermentation Conditions Using Three Different Thermotolerant Acetic Acid Bacteria
11
作者 Mariama Ciré Kourouma Malick Mbengue +1 位作者 Abdoulaye Thioye Coumba Touré Kane 《Food and Nutrition Sciences》 2023年第7期638-656,共19页
This study aimed to investigate optimal fermentation conditions of biological acetic acid fermentation for vinegar production. Optimization was performed on 3 acetic acid bacteria strains namely VMA1, VMA7 and VMAO us... This study aimed to investigate optimal fermentation conditions of biological acetic acid fermentation for vinegar production. Optimization was performed on 3 acetic acid bacteria strains namely VMA1, VMA7 and VMAO using Response Surface Methodology (RSM). A Box-Behnken-Design (BBD) was achieved with three different independent process parameters involving: fermentation temperature, original alcohol concentration and original acetic acid concentration and one dependent variable (acetic acid yield). The results showed that the mathematical models describe correctly the relationship between responses and factors (F values of the models (p R<sup>2</sup> (coefficient of correlation) respectively 0.96, 0.94, 0.98, and adjusted R<sup>2</sup> 0.95, 0.92, 0.98). The maximum acidity was obtained respectively at fermentation temperatures, original alcohol concentrations and original acetic acid concentrations ranging from [37.5°C - 45°C], [16% - 20% (v/v)], [1.5% - 2% (w/v)] for VMA1, [40°C - 45°C], [14.5% - 20% (v/v)], [1.7% - 2% (w/v)] for VMA7 and [42°C - 45°C], [17% - 20% (v/v)], [1.5% - 2% (w/v)] for VMAO. The use of these acetic strains in the production of vinegar may seriously lead to a decrease or even an ablation of the costs related to the cooling of bioreactors especially in warm and hot countries, in the context of global warming. 展开更多
关键词 VINEGAR response surface Methodology Box-Behnken-Design optimization
下载PDF
Optimization for Microbial Degumming of Ramie with Bacillus subtilis DZ_(5) in Submerged Fermentation by Orthogonal Array Design and Response Surface Methodology
12
作者 刘芬 陈杨栋 +2 位作者 朱鹏 曹张军 张兴群 《Journal of Donghua University(English Edition)》 CAS 2023年第5期475-481,共7页
As a kind of natural fiber,ramie fiber has distinctive advantages in textile application,but the application is limited due to the traditional degumming mode.Compared with the traditional degumming process,the microbi... As a kind of natural fiber,ramie fiber has distinctive advantages in textile application,but the application is limited due to the traditional degumming mode.Compared with the traditional degumming process,the microbial degumming process has many advantages.To obtain the optimal conditions for degumming ramie with Bacillus subtilis DZ_(5)(BS DZ_(5)),a combined statistical approach of orthogonal array design(OAD)and response surface methodology(RSM)was used.The influences of initial pH of the bacteria medium,culture temperature,shaking speed,degumming time and inoculum size on submerged fermentation degumming were evaluated by using fractional factorial design.The main factors in the analysis were culture temperature,shaking speed and initial pH.The residual gum mass fraction was used as the optimization index,and the optimal conditions for degumming were determined by central composite design and RSM.Thus with only a limited number of experiments,an optimal ramie microbial degumming condition was found as the culture temperature of 40℃,the initial pH in the culture medium of 8.5,the shaking speed of 205 r/min,the degumming time of 96 h and the inoculum size of 5%.After microbial degumming of ramie under the optimal conditions,there was only 10.6%residual gum by mass in the fiber.In addition,the effective degumming of BS DZ_(5)was also confirmed by a scanning electron microscope(SEM). 展开更多
关键词 microbial degumming optimization RAMIE orthogonal array design(OAD) response surface methodology(RSM)
下载PDF
Optimization of Mortar Compressive Strength Prepared with Waste Glass Aggregate and Coir Fiber Addition Using Response Surface Methodology
13
作者 Cut Rahmawati Lia Handayani +6 位作者 Muhtadin Muhammad Faisal Muhammad Zardi S.M.Sapuan Agung Efriyo Hadi Jawad Ahmad Haytham F.Isleem 《Journal of Renewable Materials》 EI 2023年第10期3751-3767,共17页
Waste Glass(WGs)and Coir Fiber(CF)are not widely utilized,even though their silica and cellulose content can be used to create construction materials.This study aimed to optimize mortar compressive strength using Resp... Waste Glass(WGs)and Coir Fiber(CF)are not widely utilized,even though their silica and cellulose content can be used to create construction materials.This study aimed to optimize mortar compressive strength using Response Surface Methodology(RSM).The Central Composite Design(CCD)was applied to determine the optimization of WGs and CF addition to the mortar compressive strength.Compressive strength and microstructure testing with Scanning Electron Microscope(SEM),Fourier-transform Infrared Spectroscopy(FT-IR),and X-Ray Diffraction(XRD)were conducted to specify the mechanical ability and bonding between the matrix,CF,and WGs.The results showed that the chemical treatment of CF produced 49.15%cellulose,with an average particle size of 1521μm.The regression of a second-order polynomial model yielded an optimum composition consisting of 12.776%WGs and 2.344%CF with a predicted compressive strength of 19.1023 MPa.C-S-H gels were identified in the mortars due to the dissolving of SiO_(2) in WGs and cement.The silica from WGs increased the C-S-H phase.CF plays a role in preventing,bridging,and branching micro-cracks before reaching maximum stress.WGs aggregates and chemically treated CF are suitable to be composited in mortar to increase compressive strength. 展开更多
关键词 CELLULOSE response surface methodology waste glass coir fiber composite
下载PDF
Optimization of Preparation Conditions of Modified Oyster Shell Powder/Ce-N-TiO2 by Response Surface Methodology (RSM)
14
作者 Wei Zhang Qizheng You +3 位作者 Jinkai Shu Aihe Wang Hai Lin Xuchao Yan 《Journal of Environmental Protection》 CAS 2023年第1期16-31,共16页
A new composite photocatalyst of modified oyster shell powder/Ce-N-TiO<sub>2</sub> was prepared by sol-gel method. Based on single factor experiment, Ce doping rate, N doping rate and calcination temperatu... A new composite photocatalyst of modified oyster shell powder/Ce-N-TiO<sub>2</sub> was prepared by sol-gel method. Based on single factor experiment, Ce doping rate, N doping rate and calcination temperature were taken as input variables. Based on the central composite design (BBD) response surface model, two functional relationship models between three independent variables and glyphosate removal rate were established to evaluate the influence degree of independent variables and interaction on catalyst. The significance of the model and regression coefficient was tested by variance analysis. The analysis of the obtained data showed that the degradation performance of the composite photocatalyst was significantly affected by the calcination temperature and the rate of N doping, while the rate of Ce doping had little effect;at the calcination temperature of 505.440°C, the degradation rate of glyphosate reached the maximum of 82.15% under the preparation conditions of 17.057 mol% N doping and 0.165 mol% Ce doping, respectively. 展开更多
关键词 Modified Titanium Dioxide response surface Methodology (RSM) PHOTOCATALYSIS GLYPHOSATE
下载PDF
Optimization of Supercritical Extraction Process of Laoshan Black Tea by Response Surface Methodology
15
作者 Yongxin LIU Zhiguang LIU +11 位作者 Zengyu WANG Shuai ZHANG Guofeng YU Jianhong SUN Shoutao CAO Qiulin LIU Xulun WEI Cuishu LENG Fuhua MA Xuegang LI Yinlong WANG Shoujie NIE 《Agricultural Biotechnology》 CAS 2023年第1期98-101,共4页
[Objectives]Laoshan black tea was subjected to supercritical CO_(2) extraction. [Methods]The extraction conditions of Laoshan black tea were studied by an orthogonal experiment and optimized by response surface method... [Objectives]Laoshan black tea was subjected to supercritical CO_(2) extraction. [Methods]The extraction conditions of Laoshan black tea were studied by an orthogonal experiment and optimized by response surface methodology. [Results] The optimum extraction conditions of black tea extract by supercritical CO_(2) extraction were as follows: extraction pressure 23.53 MPa, extraction time 1.73 h, and extraction temperature 49.75 ℃, with which the extract yield could reach 5.15% theoretically. [Conclusions] Based on the traditional extraction process, a supercritical extraction method optimized by response surface methodology and a unique extraction process were formed, which enriches the extraction processes and methods of natural raw materials. 展开更多
关键词 Laoshan black tea Supercritical extraction response surface method
下载PDF
Optimization of Solid-state Fermentation Conditions of Sophora japonica cv.jinhuai by Response Surface Methodology
16
作者 Miao YANG Chaohao GU +5 位作者 Qiling LI Zhiqiang HUANG Hao LIU Yanxi LAI Zongyou CHEN Kaimei ZHU 《Medicinal Plant》 CAS 2023年第5期36-41,共6页
[Objectives]To optimize the solid-state fermentation process of Flos Sophorae Immaturus by Penicillium with Sophora japonica cv.jinhuai as raw material.[Methods]The fermentation conditions were optimized by single fac... [Objectives]To optimize the solid-state fermentation process of Flos Sophorae Immaturus by Penicillium with Sophora japonica cv.jinhuai as raw material.[Methods]The fermentation conditions were optimized by single factor experiment and response surface methodology with quercetin content as the dependent variable.[Results]According to the established model,the optimal fermentation process of Flos Sophorae Immaturus was obtained as follows:temperature 29.97℃,time 6.88 d,rotation speed 180.86 rpm,inoculation amount 3.93 mL,and the expected content of quercetin was 34.8053 mg/g.Based on this,the fermentation parameters were adjusted,and the actual content was 33.67 mg/g,which was close to the predicted value.[Conclusions]The optimization of fermentation process of Flos Sophorae Immaturus by response surface methodology provides a reference for the development and utilization of this medicinal material. 展开更多
关键词 Sophora japonica cv.Jinhuai QUERCETIN PENICILLIUM Fermentation process response surface methodology(RSM)
下载PDF
Catalytic Hydrothermal Liquefaction of Water Hyacinth Using Fe3O4/NiO Nanocomposite: Optimization of Reaction Conditions by Response Surface Methodology
17
作者 Godwin Aturagaba Dan Egesa +1 位作者 Edward Mubiru Emmanuel Tebandeke 《Journal of Sustainable Bioenergy Systems》 2023年第3期73-98,共26页
This research aimed at optimizing the reaction conditions for the catalytic hydrothermal liquefaction (HTL) of water hyacinth using iron oxide/nickel oxide nanocomposite as catalysts. The iron oxide/nickel oxide nanoc... This research aimed at optimizing the reaction conditions for the catalytic hydrothermal liquefaction (HTL) of water hyacinth using iron oxide/nickel oxide nanocomposite as catalysts. The iron oxide/nickel oxide nanocomposite was synthesized by the co-precipitation method and used in the hydrothermal liquefaction of water hyacinth. The composition and structural morphology of the synthesized catalysts were determined using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic absorption spectroscopy (AAS). The particle size distribution of the catalyst nanoparticles was determined by the Image J software. Three reaction parameters were optimized using the response surface methodology (RSM). These were: temperature, residence time, and catalyst dosage. A maximum bio-oil yield of 59.4 wt% was obtained using iron oxide/nickel oxide nanocomposite compared to 50.7 wt% obtained in absence of the catalyst. The maximum bio-oil yield was obtained at a temperature of 320°C, 1.5 g of catalyst dosage, and 60 min of residence time. The composition of bio-oil was analyzed using gas chromatography-mass spectroscopy (GC-MS) and elemental analysis. The GC-MS results showed an increase of hydrocarbons from 58.3% for uncatalyzed hydrothermal liquefaction to 88.66% using iron oxide/nickel oxide nanocomposite. Elemental analysis results revealed an increase in the hydrogen and carbon content and a reduction in the Nitrogen, Oxygen, and Sulphur content of the bio-oil during catalytic HTL compared to HTL in absence of catalyst nanoparticles. The high heating value increased from 33.5 MJ/Kg for uncatalyzed hydrothermal liquefaction to 38.6 MJ/Kg during the catalytic HTL. The catalyst nanoparticles were recovered from the solid residue by sonication and magnetic separation and recycled. The recycled catalyst nanoparticles were still efficient as hydrothermal liquefaction (HTL) catalysts and were recycled four times. The application of iron oxide/ nickel oxide nanocomposites in the HTL of water hyacinth increases the yield of bio-oil and improves its quality by reducing hetero atoms thus increasing its energy performance as fuel. Iron oxide/nickel oxide nanocomposites used in this study are widely available and can be easily recovered magnetically and recycled. This will potentially lead to an economical, environmentally friendly, and sustainable way of converting biomass into biofuel. 展开更多
关键词 Catalytic Hydrothermal Liquefaction Water Hyacinth BIO-OIL Central Com-posite Design response surface Methodology optimization
下载PDF
A robust optimization model for demand response management with source-grid-load collaboration to consume wind-power 被引量:1
18
作者 Xiangfeng Zhou Chunyuan Cai +3 位作者 Yongjian Li Jiekang Wu Yaoguo Zhan Yehua Sun 《Global Energy Interconnection》 EI CSCD 2023年第6期738-750,共13页
To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitme... To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitment,source-network load collaboration,and control of the load demand response.After the constraint functions are linearized,the original problem is decomposed into the main problem and subproblem as a matrix using the strong dual method.The minimum-maximum of the original problem was continuously maximized using the iterative method,and the optimal solution was finally obtained.The constraint conditions expressed by the matrix may reduce the calculation time,and the upper and lower boundaries of the original problem may rapidly converge.The results of the example show that the injected nodes of the wind farms in the power grid should be selected appropriately;otherwise,it is easy to cause excessive accommodation of wind power at some nodes,leading to a surge in reserve costs and the load demand response is continuously optimized to reduce the inverse peak regulation characteristics of wind power.Thus,the most economical optimization scheme for the worst scenario of the output power of the generators is obtained,which proves the economy and reliability of the two-stage robust optimization method. 展开更多
关键词 Renewable power system Optimal dispatching Wind-power consumption Source-grid-load collaboration Load demand response Two-stage robust optimization model
下载PDF
LSTM-DPPO based deep reinforcement learning controller for path following optimization of unmanned surface vehicle 被引量:1
19
作者 XIA Jiawei ZHU Xufang +1 位作者 LIU Zhong XIA Qingtao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1343-1358,共16页
To solve the path following control problem for unmanned surface vehicles(USVs),a control method based on deep reinforcement learning(DRL)with long short-term memory(LSTM)networks is proposed.A distributed proximal po... To solve the path following control problem for unmanned surface vehicles(USVs),a control method based on deep reinforcement learning(DRL)with long short-term memory(LSTM)networks is proposed.A distributed proximal policy opti-mization(DPPO)algorithm,which is a modified actor-critic-based type of reinforcement learning algorithm,is adapted to improve the controller performance in repeated trials.The LSTM network structure is introduced to solve the strong temporal cor-relation USV control problem.In addition,a specially designed path dataset,including straight and curved paths,is established to simulate various sailing scenarios so that the reinforcement learning controller can obtain as much handling experience as possible.Extensive numerical simulation results demonstrate that the proposed method has better control performance under missions involving complex maneuvers than trained with limited scenarios and can potentially be applied in practice. 展开更多
关键词 unmanned surface vehicle(USV) deep reinforce-ment learning(DRL) path following path dataset proximal po-licy optimization long short-term memory(LSTM)
下载PDF
Optimization of process parameters for the bioconversion of activated sludge by Penicillium corylophilum, using response surface methodology 被引量:8
20
作者 Sarkar Mannan Ahmadun Fakhru'l-Razi Md Zahangir Alam 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第1期23-28,共6页
The optimization of process parameters for the bioconversion of activated sludge by Penicillium corylophilum was investigated using response surface methodology (RSM). The three parameters namely temperature of 33℃... The optimization of process parameters for the bioconversion of activated sludge by Penicillium corylophilum was investigated using response surface methodology (RSM). The three parameters namely temperature of 33℃, agitation of 150 r/min, and pH of 5 were chosen as center point from the previous study of fungal treatment. The experimental data on chemical oxygen demand (COD) removal (%) were fitted into a quadratic polynomial model using multiple regression analysis. The optimum process conditions were determined by analyzing response surface three-dimensional surface plot and contour plot and by solving the regression model equation with Design Expert software. Box-Behnken design technique under RSM was used to optimize their interactions, which showed that an incubation temperature of 32.5℃, agitation of 105 r/min, and pH of 5.5 were the best conditions. Under these conditions, the maximum predicted yield of COD removal was 98.43%. These optimum conditions were used to evaluate the trail experiment, and the maximum yield of COD removal was recorded as 98.5%. 展开更多
关键词 optimization response surface methodology PENICILLIUM activated sludge domestic wastewater sludge
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部