Wind loading is one of the most important loads for controlling the design of large-span roof structures. Equivalent static wind loads, which can generally aim at determining a specific response, are widely used by st...Wind loading is one of the most important loads for controlling the design of large-span roof structures. Equivalent static wind loads, which can generally aim at determining a specific response, are widely used by structural designers. A method for equivalent static wind loads applicable to multi-responses is proposed in this paper. A modified load- response-correlation (LRC) method corresponding to a particular peak response is presented, and the similarity algorithm implemented for the group response is described. The main idea of the algorithm is that two responses can be put into one group if the value of one response is close to that of the other response, when the structure is subjected to equivalent static wind loads aiming at the other response. Based on the modified LRC, the grouping response method is put forward to construct equivalent static wind loading. This technique can simultaneously reproduce peak responses for some grouped responses. To verify its computational accuracy, the method is applied to an actual large-span roof structure. Calculation results show that when the similarity of responses in the same group is high, equivalent static wind loads with high accuracy and reasonable magnitude of equivalent static wind distribution can be achieved.展开更多
In complex feed structures, there exist main chemical functional groups which are associated with nutrient utilization and availability and functionality. Each functional group has unique molecular structure therefore...In complex feed structures, there exist main chemical functional groups which are associated with nutrient utilization and availability and functionality. Each functional group has unique molecular structure therefore produce unique molecular vibration spectral profile. Feed processing has been used to improve nutrient utilization for many years. However, to date, there was little study on processing-induced changes of feed intrinsic structure and functional groups on a molecular basis within intact tissue. This is because limited research technique is available to study inherent structure on a molecular basis. Recently bioanalytical techniques: such as Synchrotron Infrared Microspectroscopy as well as Diffuse Reflectance Infrared Fourier Transform molecular spectroscopy have been developed. These techniques enable to detect molecular structure change within intact tissues. These techniques can prevent destruction or alteration of the intrinsic protein structures during processing for analysis. However, these techniques have not been used in animal feed and nutrition research. The objective of this review was show that with the advanced technique, sensitivity and responses of functional groups to feed processing on a molecular basis could be detected in my research team. These functional groups are highly associated with nutrient utilization in animals.展开更多
基金Ministry of Science and Technology of China Under Grant No.SLDRCE10-B-04the National Natural Science Foundation Under Grant No.50621062
文摘Wind loading is one of the most important loads for controlling the design of large-span roof structures. Equivalent static wind loads, which can generally aim at determining a specific response, are widely used by structural designers. A method for equivalent static wind loads applicable to multi-responses is proposed in this paper. A modified load- response-correlation (LRC) method corresponding to a particular peak response is presented, and the similarity algorithm implemented for the group response is described. The main idea of the algorithm is that two responses can be put into one group if the value of one response is close to that of the other response, when the structure is subjected to equivalent static wind loads aiming at the other response. Based on the modified LRC, the grouping response method is put forward to construct equivalent static wind loading. This technique can simultaneously reproduce peak responses for some grouped responses. To verify its computational accuracy, the method is applied to an actual large-span roof structure. Calculation results show that when the similarity of responses in the same group is high, equivalent static wind loads with high accuracy and reasonable magnitude of equivalent static wind distribution can be achieved.
基金supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC)SaskCanola Funding+1 种基金Saskatchewan Agricultural Development Fund (ADF)Ministry of Agriculture Strategic Research Chair Fund (Saskatchewan,Canada)
文摘In complex feed structures, there exist main chemical functional groups which are associated with nutrient utilization and availability and functionality. Each functional group has unique molecular structure therefore produce unique molecular vibration spectral profile. Feed processing has been used to improve nutrient utilization for many years. However, to date, there was little study on processing-induced changes of feed intrinsic structure and functional groups on a molecular basis within intact tissue. This is because limited research technique is available to study inherent structure on a molecular basis. Recently bioanalytical techniques: such as Synchrotron Infrared Microspectroscopy as well as Diffuse Reflectance Infrared Fourier Transform molecular spectroscopy have been developed. These techniques enable to detect molecular structure change within intact tissues. These techniques can prevent destruction or alteration of the intrinsic protein structures during processing for analysis. However, these techniques have not been used in animal feed and nutrition research. The objective of this review was show that with the advanced technique, sensitivity and responses of functional groups to feed processing on a molecular basis could be detected in my research team. These functional groups are highly associated with nutrient utilization in animals.