期刊文献+
共找到63篇文章
< 1 2 4 >
每页显示 20 50 100
Responsive mechanism of three novel hypochlorous acid fluorescent probes and solvent effect on their sensing performance
1
作者 周勇 王云坤 +2 位作者 王晓菲 张玉瑾 王传奎 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第8期123-129,共7页
Optical properties and responsive mechanisms of three newly synthesized fluorescent probes for hypochlorous acid (HOC1) are investigated by employing time-dependent density functional theory. The computational resul... Optical properties and responsive mechanisms of three newly synthesized fluorescent probes for hypochlorous acid (HOC1) are investigated by employing time-dependent density functional theory. The computational results show that the absorption and emission properties of these probes change obviously when they react with hypochlorous acid. It is found that the probe FHZ has the best performance according to the probing behavior. Moreover, the responsive mechanisms of the probes are studied by analyzing the distributions of molecular orbitals and charge transfer, which are shown as the photon- induced electron transfer (PET) for FHZ and the intramolecular charge transfer OCT) for the other two probes. Specially, solvent effect on optical properties of the probe FHZ before and after reaction is studied within the polarizable continuum model (PCM). It is shown that performance of the probe depends crucially on the solvent polarity. Our computational results agree well with the experimental measurement, and provide information for design of efficient two-photon fluorescent probes. 展开更多
关键词 responsive mechanism hypochlorous acid fluorescentprobe solvent effect two-photon absorption
下载PDF
A Preliminary Study on Mechanisms of Well Water Temperature Responses Based on the Modes of Stress Loading
2
作者 Chen Daqing Wan Yongfang 《Earthquake Research in China》 2011年第4期477-485,共9页
Based on the studies of the predecessors, and contrasting the modes of stress loading with water level and water temperature response characteristics of a well-aquifer system, this paper draws a preliminary conclusion... Based on the studies of the predecessors, and contrasting the modes of stress loading with water level and water temperature response characteristics of a well-aquifer system, this paper draws a preliminary conclusion on the mechanisms of water temperature responses in a well caused by three modes of stress loading, i.e. gas escape, heat dispersion and cold water penetration mechanisms for elastic seismic wave stress loading; the fracture seepage mechanism for seismic wave stress loading and the hydrodynamic mechanism for earth tide stress loading and stress-dissipative heat mechanism for long period slow stress loading in the earthquake preparation stage. This paper illustrates the typical observation examples for each mode of stress loading and makes a preliminary study on their mechanisms. 展开更多
关键词 Water temperature in well Stress loading Response mechanism
下载PDF
A review of in situ carbon mineralization in basalt 被引量:2
3
作者 Xiaomin Cao Qi Li +1 位作者 Liang Xu Yongsheng Tan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1467-1485,共19页
Global warming has greatly threatened the human living environment and carbon capture and storage(CCS)technology is recognized as a promising way to reduce carbon emissions.Mineral storage is considered a reliable opt... Global warming has greatly threatened the human living environment and carbon capture and storage(CCS)technology is recognized as a promising way to reduce carbon emissions.Mineral storage is considered a reliable option for long-term carbon storage.Basalt rich in alkaline earth elements facilitates rapid and permanent CO_(2) fixation as carbonates.However,the complex CO_(2)-fluid-basalt interaction poses challenges for assessing carbon storage potential.Under different reaction conditions,the carbonation products and carbonation rates vary.Carbon mineralization reactions also induce petrophysical and mechanical responses,which have potential risks for the long-term injectivity and the carbon storage safety in basalt reservoirs.In this paper,recent advances in carbon mineralization storage in basalt based on laboratory research are comprehensively reviewed.The assessment methods for carbon storage potential are introduced and the carbon trapping mechanisms are investigated with the identification of the controlling factors.Changes in pore structure,permeability and mechanical properties in both static reactions and reactive percolation experiments are also discussed.This study could provide insight into challenges as well as perspectives for future research. 展开更多
关键词 Carbon mineralization BASALT CO_(2)-fluid-basalt interaction Petrophysical evolution Mechanical response Carbon capture and storage(CCS)
下载PDF
Stability of bedded rock slopes subjected to hydro-fluctuation and associated strength deterioration
4
作者 Bin Xu Xinrong Liu +2 位作者 Yue Liang Xiaohan Zhou Zuliang Zhong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3233-3257,共25页
Reservoir-induced earthquakes(RIEs)occur frequently in the Three Gorges Reservoir Area(TGRA)and the rock mass strength of the hydro-fluctuation belt(HFB)deteriorates severely due to the reservoirinduced seismic loads.... Reservoir-induced earthquakes(RIEs)occur frequently in the Three Gorges Reservoir Area(TGRA)and the rock mass strength of the hydro-fluctuation belt(HFB)deteriorates severely due to the reservoirinduced seismic loads.Three models of typical bedded rock slopes(BRSs),i.e.gently(GIS),moderately(MIS),and steeply(SIS)inclined slopes,were proposed according to field investigations.The dynamic response mechanism and stability of the BRSs,affected by the rock mass deterioration of the HFB,were investigated by the shaking table test and the universal distinct element code(UDEC)simulation.Specifically,the amplification coefficient of the peak ground acceleration(PGA)of the slope was gradually attenuated under multiple seismic loads,and the acceleration response showed obvious“surface effect”and“elevation effect”in the horizontal and vertical directions,respectively.The“S-type”cubic function and“steep-rise type”exponential function were used to characterize the cumulative damage evolution of the slope caused by microseismic waves(low seismic waves)and high seismic waves,respectively.According to the dynamic responses of the acceleration,cumulative displacement,rock pressure,pore water pressure,damping ratio,natural frequency,stability coefficient,and sliding velocity of the slope,the typical evolution processes of the dynamic cumulative damage and instability failure of the slope were generalized,and the numerical and experimental results were compared.Considering the dynamic effects of the slope height(SH),slope angle(SA),bedding plane thickness(BPT),dip angle of the bedding plane(DABP),dynamic load amplitude(DLA),dynamic load frequency(DLF),height of water level of the hydro-fluctuation belt(HWLHFB),degradation range of the hydro-fluctuation belt(DRHFB),and degradation shape of the hydro-fluctuation belt(DSHFB),the sensitivity of factors influencing the slope dynamic stability using the orthogonal analysis method(OAM)was DLA>DRHFB>SA>SH>DLF>HWLHFB>DSHFB>DABP>BPT. 展开更多
关键词 Bedded rock slopes Hydro-fluctuation belt Shaking table test UDEC simulation Dynamic response mechanism
下载PDF
Investigations of the mechanical response of dummy HTPB propellant grain under ultrahigh acceleration overload conditions using onboard flight-test measurements
5
作者 Yiming Zhang Ningfei Wang +3 位作者 Weihua Ma Ran Wang Long Bai Yi Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期473-484,共12页
In this paper,to study the mechanical responses of a solid propellant subjected to ultrahigh acceleration overload during the gun-launch process,specifically designed projectile flight tests with an onboard measuremen... In this paper,to study the mechanical responses of a solid propellant subjected to ultrahigh acceleration overload during the gun-launch process,specifically designed projectile flight tests with an onboard measurement system were performed.Two projectiles containing dummy HTPB propellant grains were successfully recovered after the flight tests with an ultrahigh acceleration overload value of 8100 g.The onboard-measured time-resolved axial displacement,contact stress and overload values were successfully obtained and analysed.Uniaxial compression tests of the dummy HTPB propellant used in the gunlaunched tests were carried out at low and intermediate strain rates to characterize the propellant's dynamic properties.A linear viscoelastic constitutive model was employed and applied in finite-element simulations of the projectile-launching process.During the launch process,the dummy propellant grain exhibited large deformation due to the high acceleration overload,possibly leading to friction between the motor case and propellant grain.The calculated contact stress showed good agreement with the experimental results,though discrepancies in the overall displacement of the dummy propellant grain were observed.The dynamic mechanical response process of the dummy propellant grain was analysed in detail.The results can be used to estimate the structural integrity of the analysed dummy propellant grain during the gun-launch process. 展开更多
关键词 Gun-launched flight test Dummy HTPB propellant Onboard measurements Utrahigh overload Mechanical response
下载PDF
Analytical modeling and approaches of multihelix cables incorporating with interwire mutual contacts
6
作者 Zhichao ZHANG Xingzhe WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第9期1633-1654,共22页
This study aims to develop an analytical model based on the curve beam theory to capture the mechanical response of a multihelix cable considering the internal contact displacements.Accordingly,a double-helix cable su... This study aims to develop an analytical model based on the curve beam theory to capture the mechanical response of a multihelix cable considering the internal contact displacements.Accordingly,a double-helix cable subjected to axial tension and torsion is analyzed,and both the line and point contacts between the neighboring wires and strands are considered via an equivalent homogenized approach.Then,the proposed theoretical model is extended to a hierarchical multihelix cable with mutual contact displacements by constructing a recursive relationship between the high-and low-level multihelix structures.The global tensile stiffness and torsional stiffness of the double-helix cable are successfully evaluated.The results are validated by a finite element(FE)model,and are found to be consistent with the findings of previous studies.It is shown that the contact deformations in multihelix cables significantly affect their equivalent mechanical stiffness,and the contact displacements are remarkably enhanced as the helix angles increase.This study provides insights into the interwire/interstrand mutual contact effects on global and local responses. 展开更多
关键词 wordshierarchical multihelix cable mutual contact effect mechanical response effective stiffness
下载PDF
Comparative analysis of thermodynamic and mechanical responses between underground hydrogen storage and compressed air energy storage in lined rock caverns
7
作者 Bowen Hu Liyuan Yu +5 位作者 Xianzhen Mi Fei Xu Shuchen Li Wei Li Chao Wei Tao Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期531-543,共13页
Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to comp... Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to compare the properties of hydrogen and air with typical thermodynamic storage processes.This study employs a multi-physical coupling model to compare the operations of CAES and UHS,integrating gas thermodynamics within caverns,thermal conduction,and mechanical deformation around rock caverns.Gas thermodynamic responses are validated using additional simulations and the field test data.Temperature and pressure variations of air and hydrogen within rock caverns exhibit similarities under both adiabatic and diabatic simulation modes.Hydrogen reaches higher temperature and pressure following gas charging stage compared to air,and the ideal gas assumption may lead to overestimation of gas temperature and pressure.Unlike steel lining of CAES,the sealing layer(fibre-reinforced plastic FRP)in UHS is prone to deformation but can effectively mitigates stress in the sealing layer.In CAES,the first principal stress on the surface of the sealing layer and concrete lining is tensile stress,whereas UHS exhibits compressive stress in the same areas.Our present research can provide references for the selection of energy storage methods. 展开更多
关键词 Underground hydrogen storage Compressed air energy storage Mechanical response Thermodynamic response Lined rock caverns
下载PDF
Influence of the boundary effect on the mechanical response test of pavement cushion under the wetting effect of silt
8
作者 Luo Qiqi Yu Qian +3 位作者 Zhang Sheng Ma Xinyan Ye Xinyu Du Yinfei 《Journal of Southeast University(English Edition)》 EI CAS 2024年第3期266-274,共9页
Through a self-developed model test system,the mechanical properties of silt and the deformation characteristics of airport runways were investigated during the period of subgrade wetting.Based on the test results,the... Through a self-developed model test system,the mechanical properties of silt and the deformation characteristics of airport runways were investigated during the period of subgrade wetting.Based on the test results,the reliability of the numerical simulation results was verified.Numerical models with different sizes were established.Under the same cushion parameter and loading width ranges,the effects of the cushion parameters and loading conditions on the mechanical responses of the cushion before and after subgrade wetting were analyzed.The results show that the internal friction angles of silt with different wetting degrees are approximately 34°.The cohesion is from 8 to 44 kPa,and the elastic modulus is from 15 to 34 MPa.Before and after subgrade wetting,the variation rates of the cushion horizontal tensile stresses with the same cushion parameters and loading width ranges are different under the influence of boundary effects.After subgrade wetting,the difference in the variation rates of the cushion horizontal tensile stresses under the same cushion parameter range decreases compared with that before subgrade wetting;however,this difference increases under the same loading width range.Before and after subgrade wetting,the influence of the boundary effect on the mechanical response evaluation of the cushion is not beneficial for optimizing the pavement design parameters.When the cushion thickness is more than 0.25 m,the influence of the boundary effect can be disregarded. 展开更多
关键词 pavement cushion silt subgrade WETTING boundary effect mechanical response
下载PDF
Unleashing the Potential of Unidirectional Mechanical Materials: Breakthroughs and Promising Applications
9
作者 Sunil Harripersad 《Materials Sciences and Applications》 2024年第4期66-86,共21页
The emergence of mechanically one-way materials presents an exciting opportunity for materials science and engineering. These substances exhibit unique nonreciprocal mechanical responses, enabling them to selectively ... The emergence of mechanically one-way materials presents an exciting opportunity for materials science and engineering. These substances exhibit unique nonreciprocal mechanical responses, enabling them to selectively channel mechanical energy and facilitate directed sound propagation, controlled mass transport, and concentration of mechanical energy amidst random motion. This article explores the fundamentals of mechanically one-way materials, their potential applications across various industries, and the economic and environmental considerations related to their production and use. 展开更多
关键词 Mechanically One-Way Materials Nonreciprocal Mechanical Responses Directed Sound Propagation Controlled Mass Transport Energy Harvesting Structural Engineering Economic Viability Environmental Impact
下载PDF
Mechanical properties of epoxy asphalt mixture pavement with lightweight aggregate applied on bascule bridge 被引量:1
10
作者 刘云 钱振东 +1 位作者 张磊 江陈龙 《Journal of Southeast University(English Edition)》 EI CAS 2012年第3期321-326,共6页
The high temperature anti-rutting performance,water stability and low temperature bending property of epoxy asphalt mixture with 0%,15%,25%,40%,and 70% granulated and circular lightweight aggregates by weight are test... The high temperature anti-rutting performance,water stability and low temperature bending property of epoxy asphalt mixture with 0%,15%,25%,40%,and 70% granulated and circular lightweight aggregates by weight are tested,respectively.The dynamic responses under the vehicle load and in the opening process are analyzed to obtain the mechanical responses of pavements by using the finite element method.The complicated structure including a steel deck and a waterproof adhesive layer is made to verify the bond strength of the 2451-type epoxy asphalt binder.Research results show that the epoxy asphalt mixtures with lightweight aggregate replacement percentages from 0% to 70% all satisfy the requirements for steel bridge pavements.The epoxy asphalt mixture with a 70% circular lightweight aggregate replacement percentage is recommended because of its smaller density when compared with other epoxy asphalt mixtures.The shear stress increases with the increase in the opening angle and achieves its maximum at the maximum opening angle of 85°.Test results show that the Tianjin Bascule Bridge can be used for first opening after a 3 d pavement conditioning. 展开更多
关键词 bascule bridge steel bridge deck pavement lightweight aggregate mechanical response shear stress
下载PDF
Influence of pore structures on the mechanical behavior of low-permeability sandstones:numerical reconstruction and analysis 被引量:34
11
作者 Jiangtao Zheng Yang Ju Xi Zhao 《International Journal of Coal Science & Technology》 EI CAS 2014年第3期329-337,共9页
The research of rock properties based on its inherent microscopic to mesoscopic porous structure has drawn great attention for its potential in predicting the macroscopic behavior of rocks.An accurate reconstruction o... The research of rock properties based on its inherent microscopic to mesoscopic porous structure has drawn great attention for its potential in predicting the macroscopic behavior of rocks.An accurate reconstruction of the threedimensional porous structure is a premise for the related studies of hydraulic and mechanical properties of rocks,such as the transport properties and mechanical responses under pressures.In this paper,we present a computer procedure for reconstructing the 3D porous structure of low-permeability sandstone.Two large-size 3D models are reconstructed based on the information of a reference model which is established from computed tomography(CT)images.A self-developed finite element method is applied to analyze the nonlinear mechanical behavior of the sandstone based on its reconstructed model and to compare the results with those based on the reference model.The good consistency of the obtained mechanical responses indicates the potential of using reconstruction models to predict the influences of porous structure on the mechanical properties of low-permeability sandstone. 展开更多
关键词 Porous structure RECONSTRUCTION Mechanical response Finite element method
下载PDF
Mechanical response of bridge piles in high-steep slopes and sensitivity study 被引量:11
12
作者 赵衡 尹平保 李夕兵 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期4043-4048,共6页
The bridge piles located in high-steep slopes not only endure the loads from superstructure, but also the residual sliding force as well as the resistance from the slope. By introducing the Winkler foundation theory, ... The bridge piles located in high-steep slopes not only endure the loads from superstructure, but also the residual sliding force as well as the resistance from the slope. By introducing the Winkler foundation theory, the mechanical model of piles-soils-slopes system was established, and the equilibrium differential equations of pile were derived. Moreover, an analytic solution for identifying the model parameters was provided by means of power series method. A project with field measurement was compared with the proposed method. It is indicated that the lateral loads have great influences on the pile, the steep slope effect is indispensable, and reasonable diameter of the pile could enhance the bending ability. The internal force and displacements of pile are largely based upon the horizontal loads applied on pile, especially in upper part. 展开更多
关键词 BRIDGE mechanical response high-steep slope inclined load power series method
下载PDF
Fracture properties of epoxy asphalt mixture based on extended finite element method 被引量:7
13
作者 钱振东 胡靖 《Journal of Central South University》 SCIE EI CAS 2012年第11期3335-3341,共7页
Crack is found to be a major distress that affects the performance of the epoxy asphalt pavement.An extended finite element method was proposed for investigating the fracture properties of the epoxy asphalt mixture.Fi... Crack is found to be a major distress that affects the performance of the epoxy asphalt pavement.An extended finite element method was proposed for investigating the fracture properties of the epoxy asphalt mixture.Firstly,the single-edge notched beam test was used to analyze the temperature effect and calculate the material parameters.Then,the mechanical responses were studied using numerical analysis.It is concluded that 5℃ can be selected as the critical temperature that affects the fracture properties,and numerical simulations indicate that crack propagation is found to significantly affect the stress state of the epoxy asphalt mixture.The maximum principal stress at the crack surface exhibits different trends at various temperatures.Numerical solution of stress intensity factor can well meet the theoretical solution,especially when the temperature is lower than 5℃. 展开更多
关键词 epoxy asphalt mixture MICROSTRUCTURE extended finite element method fracture morphology mechanical response
下载PDF
External blast flow field evolution and response mechanism of single-layer reticulated dome structure 被引量:3
14
作者 Shao-bo Qi Guang-yan Huang +1 位作者 Xu-dong Zhi Feng Fan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期241-253,共13页
Single-layer reticulated dome structure are commonly high-profile building in the public and can be attractive targets for terrorist bombings,so the public can benefit from enhanced safety with a stronger understandin... Single-layer reticulated dome structure are commonly high-profile building in the public and can be attractive targets for terrorist bombings,so the public can benefit from enhanced safety with a stronger understanding of the behavior of single-layer reticulated dome structure under explosion.This paper investigates the fluid-structure interaction process and the dynamic response performance of the singlelayer reticulated dome under external blast load.Both experimental and numerical results shown that structural deformation is remarkably delayed compared with the velocity of blast wave,which advises the dynamic response of large-span reticulated dome structure has a negligible effect on the blast wave propagation under explosion.Four failure modes are identified by comparing the plastic development of each ring and the residual spatial geometric of the structure,i.e.,minor vibration,local depression,severe damage,and overall collapse.The plastic deformation energy and the displacement potential energy of the structure are the main consumers of the blast energy.In addition,the stress performance of the vertex member and the deep plastic ratio of the whole structure can serve as qualitative indicators to distinguish different failure modes. 展开更多
关键词 External blast loading Reticulated dome structure Fluid-structure interaction Dynamic response mode Response mechanism
下载PDF
The effect of strain rate on compressive behavior and failure mechanism of CMDB propellant 被引量:4
15
作者 Heng-ning Zhang Hai Chang +2 位作者 Xiao-jiang Li Xiong-gang Wu Qi-wen He 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第3期467-475,共9页
The compressive mechanical behavior of composite modified double base(CMDB)propellant was investigated across a wide scope of strain rates ranging from 10^(-3) s^(-1) to 4210 s^(-1) at room temperature,by applying a c... The compressive mechanical behavior of composite modified double base(CMDB)propellant was investigated across a wide scope of strain rates ranging from 10^(-3) s^(-1) to 4210 s^(-1) at room temperature,by applying a conventional universal testing machine and a split Hopkinson tension bar(SHPB),respectively.The derived stress-strain curves at different strain rates show a strong rate dependence,indicated that yield stress,ultimate stress and strain energy density of CMDB propellant all increase with strain rate by following a power law function,while the amplification of increase are different.The deformation and damage modes of CMDB propellant has changed from a typical ductile manner(cracking along the axial direction)to a brittle manner(maximum shear failure)with increasing of strain rate.Scanning electron microscopy(SEM)was employed to explore the microscopic failure characteristics of CMDB propellant.Under quasi-static loading,the nearly parallel micro-cracks propagating along the axial direction and the debonding of RDX particle without particle crushing can be observed.While under dynamic loading,the micro-crack is 45 angle to the axial direction,and multiple cracking modes of RDX particles appeared.Finally,the correlation between strain energy density and failure mechanisms of CMDB propellant was revealed by developing four characteristic failure modes.The findings of this study is very important to evaluate the structural integrity of CMDB propellant. 展开更多
关键词 CMDB propellant Mechanical response Strain-rate dependence Failure mechanisms
下载PDF
Mechanical response of transmission lines based on sliding cable element 被引量:4
16
作者 刘云 钱振东 夏开全 《Journal of Central South University》 SCIE EI CAS 2014年第8期3370-3377,共8页
In order to study the sliding characteristics when the cable is connected with the other rods in the transmission line structures,a linear sliding cable element based on updated Lagrangian formulation and a sliding ca... In order to study the sliding characteristics when the cable is connected with the other rods in the transmission line structures,a linear sliding cable element based on updated Lagrangian formulation and a sliding catenary element considering the out-of-plane stiffness coefficient are put forward.A two-span and a three-span cable structures are taken as examples to verify the sliding cable elements.By comparing the tensions of the two proposed cable elements with the existing research results,the error is less than 1%,which proves the correctness of the proposed elements.The sliding characteristics should be considered in the practical engineering because of the significant difference between the tensions of sliding cable elements and those of cable element without considering sliding.The out-of-plane stiffness coefficient and friction characteristics do not obviously affect the cable tensions. 展开更多
关键词 transmission lines sliding cable element updated Lagrangian formulation geometric nonlinearity mechanical response
下载PDF
Unveiling the mechanical response and accommodation mechanism of pre-rolled AZ31 magnesium alloy under high-speed impact loading 被引量:4
17
作者 Xiao Liu Hui Yang +3 位作者 Biwu Zhu Yuanzhi Wu Wenhui Liu Changping Tang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第4期1096-1108,共13页
Split Hopkinson pressure bar(SHPB)tests were conducted on pre-rolled AZ31 magnesium alloy at 150–350℃ with strain rates of 2150s-1,3430s^(-1) and 4160s-1.The mechanical response,microstructural evolution and accommo... Split Hopkinson pressure bar(SHPB)tests were conducted on pre-rolled AZ31 magnesium alloy at 150–350℃ with strain rates of 2150s-1,3430s^(-1) and 4160s-1.The mechanical response,microstructural evolution and accommodation mechanism of the pre-rolled AZ31 magnesium alloy under high-speed impact loading were investigated.The twin and shear band are prevailing at low temperature,and the coexistence of twins and recrystallized grains is the dominant microstructure at medium temperature,while at high temperature,dynamic recrystallization(DRX)is almost complete.The increment of temperature reduces the critical condition difference between twinning and DRX,and the recrystallized temperature decreases with increasing strain rate.The mechanical response is related to the competition among the shear band strengthen,the twin strengthen and the fine grain strengthen and determined by the prevailing grain structure.The fine grain strengthen could compensate soften caused by the temperature increase and the reduction of twin and shear band.During high-speed deformation,different twin variants,introduced by pre-rolling,induce different deformation mechanism to accommodate plastic deformation and are in favor for non-basal slip.At low temperature,the high-speed deformation is achieved by twinning,dislocation slip and the following deformation shear band at different deformation stages.At high temperature,the high-speed deformation is realized by twinning and dislocation slip of early deformation stage,transition shear band of medium deformation stage and DRX of final deformation stage. 展开更多
关键词 Mechanical response Pre-twinning Accommodation mechanism Pre-rolled AZ31 magnesium alloy High-speed impact loading
下载PDF
Supporting structure failure caused by the squeezing tunnel creep and its reinforcement measure 被引量:2
18
作者 ZHAO Jin-peng TAN Zhong-sheng +1 位作者 LI Lei WANG Xiu-ying 《Journal of Mountain Science》 SCIE CSCD 2023年第6期1774-1789,共16页
Tunnels deeply buried have high crustal stress and are prone to large deformation disasters when encountering soft rock.The large deformation phenomenon during the construction process of the Maoxian Tunnel on the Che... Tunnels deeply buried have high crustal stress and are prone to large deformation disasters when encountering soft rock.The large deformation phenomenon during the construction process of the Maoxian Tunnel on the Chengdu-Lanzhou Railway is particularly evident.This article focuses on the large deformation problem of the No.1 inclined shaft of the Maoxian Tunnel,and uses on-site monitoring methods to explore the reasons for tunnel structure failure,and analyzes the mechanical behavior of the tunnel structure.By using numerical simulation methods,the effectiveness of the second-layer support in resisting creep loads in tunnels was studied,and the influence of the construction time of the secondlayer support on the mechanical properties of the tunnel was discussed.The results indicate that the first-layer support in the tunnel is a structural failure caused by asymmetric deformation caused by creep,while the second-layer support has a good effect on resisting creep loads.The research results can provide a technical reference for deformation control of squeezing tunnels. 展开更多
关键词 Squeezing tunnel Mechanical responses Long-term creep Second-layer support On-site monitoring
下载PDF
Experimental study of motion characteristics of rock slopes with weak intercalation under seismic excitation 被引量:8
19
作者 CHEN Zhen-Lin HU Xiao XU Qiang 《Journal of Mountain Science》 SCIE CSCD 2016年第3期546-556,共11页
In order to investigate the effect of a weak intercalation on slope stability, a large-scale shaking table model test was conducted to study the dynamic response of rock slope models with weak intercalation.The dynami... In order to investigate the effect of a weak intercalation on slope stability, a large-scale shaking table model test was conducted to study the dynamic response of rock slope models with weak intercalation.The dynamic response of the prototype slopes were studied in laboratory with the consideration of law of similitude. The initiation failure was observed in the rock slope model with a counter-tilt thin-weak intercalation firstly, not in the slope model with a horizontal thin-weak intercalation. Furthermore, it was interesting that the fracture site is shifted from crest top to the slope surface near the weak intercalation, which is different with the location of failure position in a normal layered slope. We also discussed the effect of the dip angle and the thickness of weak intercalation on the failure mechanism and instability mode of the layered rock slope. From the experimental result, it was noted that the stability of the slope with a counter-tilt weak intercalation could be worse than that of the other slopes under seismic excitation. The findings showed the difference of failure in slopes with a horizontal and counter weak intercalation, and implicated the further evaluation of failure of layered slopes caused by seismic loads. 展开更多
关键词 Counter-tilt Rock slope Weak intercalation Dynamic response Failure mechanism
下载PDF
Quench characteristics and mechanical responses during quench propagation in rare earth barium copper oxide pancake coils 被引量:2
20
作者 Mengdie NIU Jing XIA +1 位作者 Huadong YONG Youhe ZHOU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第2期235-250,共16页
Quench and mechanical behaviors are critical issues in high temperature superconducting(HTS)coils.In this paper,the quench characteristics in the rare earth barium copper oxide(REBCO)pancake coil at 4.2K are analyzed,... Quench and mechanical behaviors are critical issues in high temperature superconducting(HTS)coils.In this paper,the quench characteristics in the rare earth barium copper oxide(REBCO)pancake coil at 4.2K are analyzed,and a two-dimensional(2D)axisymmetric electro-magneto-thermal model is presented.The effects of the constituent materials,background field,and coil size are analyzed.An elastoplastic mechanical model is used to study the corresponding mechanical responses during the quench propagation.The variations of the temperature and strain in superconducting layers are compared.The results indicate that the radial strain evolutions can reflect the transverse quench propagation and the tensile hoop and radial stresses in superconducting layers increase with the quench propagation.The possible damages are discussed with the consideration of the effects of the background field and coil size.It is concluded that the high background field significantly increases the maximum tensile hoop and radial stresses in quenching coils and local damage may be caused. 展开更多
关键词 rare earth barium copper oxide(REBCO)pancake coil hoop stress quench characteristic mechanical response radial stress
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部