Functional magnetic resonance imaging studies have shown that the insular cortex has a signif- icant role in pain identification and information integration, while the default mode network is associated with cognitive...Functional magnetic resonance imaging studies have shown that the insular cortex has a signif- icant role in pain identification and information integration, while the default mode network is associated with cognitive and memory-related aspects of pain perception. However, changes in the functional connectivity between the defauk mode network and insula during pain remain unclear. This study used 3.0 T functional magnetic resonance imaging scans in 12 healthy sub- jects aged 24.8 ± 3.3 years to compare the differences in the functional activity and connectivity of the insula and default mode network between the baseline and pain condition induced by intramuscular injection of hypertonic saline. Compared with the baseline, the insula was more functionally connected with the medial prefrontal and lateral temporal cortices, whereas there was lower connectivity with the posterior cingulate cortex, precuneus and inferior parietal lobule in the pain condition. In addition, compared with baseline, the anterior cingulate cortex exhibited greater connectivity with the posterior insula, but lower connectivity with the anterior insula, during the pain condition. These data indicate that experimental low back pain led to dysfunction in the connectivity between the insula and default mode network resulting from an impairment of the regions of the brain related to cognition and emotion, suggesting the impor- tance of the interaction between these regions in pain processing.展开更多
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev...Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.展开更多
AIM:To analyze whether alterations of voxel mirror homology connectivity(VMHC)values,as determined by resting-state functional magnetic resonance imaging(rsfMRI),occur in cerebral regions of patients with hypertensive...AIM:To analyze whether alterations of voxel mirror homology connectivity(VMHC)values,as determined by resting-state functional magnetic resonance imaging(rsfMRI),occur in cerebral regions of patients with hypertensive retinopathy(HR)and to determine the relationship between VMHC values and clinical characteristics in patients with HR.METHODS:Twenty-one patients with HR and 21 agematched healthy controls(HCs)were assessed by rsfMRI scanning.The functional connectivity between the hemispheres of the cerebrum was assessed by measuring VMHC,with the ability of VMHC to distinguish between the HR and HC groups assessed using receiver operating characteristic(ROC)curve analysis.Differences in the demographic and clinical characteristics of the HR and HC groups were analyzed by independent sample t-tests.The relationship between average VMHC in several brain areas of HR patients and clinical features was determined using Pearson correlation analysis.RESULTS:Mean VMHC values of the bilateral cuneus gyrus(BA19),bilateral middle orbitofrontal gyrus(BA47),bilateral middle temporal gyrus(BA39)and bilateral superior medial frontal gyrus(BA9)were lower in the HR than in the HC group.CONCLUSION:VMHC values can predict the development of early HR,prevent the transformation of hypertensive microangiopathy,and provide useful information explaining the changes in neural mechanism associated with HR.展开更多
BACKGROUND Currently,adolescent depression is one of the most significant public health concerns,markedly influencing emotional,cognitive,and social maturation.Despite advancements in distinguish the neurobiological s...BACKGROUND Currently,adolescent depression is one of the most significant public health concerns,markedly influencing emotional,cognitive,and social maturation.Despite advancements in distinguish the neurobiological substrates underlying depression,the intricate patterns of disrupted brain network connectivity in adolescents warrant further exploration.AIM To elucidate the neural correlates of adolescent depression by examining brain network connectivity using resting-state functional magnetic resonance imaging(rs-fMRI).METHODS The study cohort comprised 74 depressed adolescents and 59 healthy controls aged 12 to 17 years.Participants underwent rs-fMRI to evaluate functional connectivity within and across critical brain networks,including the visual,default mode network(DMN),dorsal attention,salience,somatomotor,and frontoparietal control networks.RESULTS Analyses revealed pronounced functional disparities within key neural circuits among adolescents with depression.The results demonstrated existence of hemispheric asymmetries characterized by enhanced activity in the left visual network,which contrasted the diminished activity in the right hemisphere.The DMN facilitated increased activity within the left prefrontal cortex and reduced engagement in the right hemisphere,implicating disrupted self-referential and emotional processing mechanisms.Additionally,an overactive right dorsal attention network and a hypoactive salience network were identified,underscoring significant abnormalities in attentional and emotional regulation in adolescent depression.CONCLUSION The findings from this study underscore distinct neural connectivity disruptions in adolescent depression,underscoring the critical role of specific neurobiological markers for precise early diagnosis of adolescent depression.The observed functional asymmetries and network-specific deviations elucidate the complex neurobiological architecture of adolescent depression,supporting the development of targeted therapeutic strategies.展开更多
Examining the spontaneous BOLD activity to understand the neural mechanism of Parkinson’s disease(PD)with mild cognitive impairment(MCI)is a focus in resting-state functional MRI(rs-fMRI)studies.This study aimed to i...Examining the spontaneous BOLD activity to understand the neural mechanism of Parkinson’s disease(PD)with mild cognitive impairment(MCI)is a focus in resting-state functional MRI(rs-fMRI)studies.This study aimed to investigate the alteration of brain functional connectivity in PD with MCI in a systematical way at two levels:functional connectivity analysis within resting state networks(RSNs)and functional network connectivity(FNC)analysis.Using group independent component analysis(ICA)on rs-fMRI data acquired from 30 participants(14 healthy controls and 16 PD patients with MCI),16 RSNs were identified,and functional connectivity analysis within the RSNs and FNC analysis were carried out between groups.Compared to controls,patients with PD showed decreased functional connectivity within putamen network,thalamus network,cerebellar network,attention network,and self-referential network,and increased functional connectivity within execution network.Globally disturbed,mostly increased functional connectivity of FNC was observed in PD group,and insular network and execution network were the dominant network with extensively increased functional connectivity with other RSNs.Cerebellar network showed decreased functional connectivity with caudate network,insular network,and self-referential network.In general,decreased functional connectivity within RSNs and globally disturbed,mostly increased functional connectivity of FNC may be characteristics of PD.Increased functional connectivity within execution network may be an early marker of PD.The multi-perspective study based on RSNs may be a valuable means to assess functional changes corresponding to specific RSN,contributing to the understanding of the neural mechanism of PD.展开更多
Previous studies on brain functional connectivity networks in children have mainly focused on changes in function in specific brain regions, as opposed to whole brain connectivity in healthy children. By analyzing the...Previous studies on brain functional connectivity networks in children have mainly focused on changes in function in specific brain regions, as opposed to whole brain connectivity in healthy children. By analyzing the independent components of activation and network connectivity between brain regions, we examined brain activity status and development trends in children aged 3 and 5 years. These data could provide a reference for brain function rehabilitation in children with illness or abnormal function. We acquired functional magnetic resonance images from 15 3-year-old children and 15 5-year-old children under natural sleep cond让ions. The participants were recruited from five kindergartens in the Nanshan District of Shenzhen City, China. The parents of the participants signed an informed consent form with the premise that they had been fully informed regarding the experimental protocol. We used masked independent component analysis and BrainNet Viewer software to explore the independent components of the brain and correlation connections between brain regions. We identified seven independent components in the two groups of children, including the executive control network, the dorsal attention network, the default mode network, the left frontoparietal network, the right frontoparietal network, the salience network, and the motor network. In the default mode network, the posterior cingulate cortex, medial frontal gyrus, and inferior parietal lobule were activated in both 3- and 5-year-old children, supporting the "three-brain region theory” of the default mode network. In the frontoparietal network, the frontal and parietal gyri were activated in the two groups of children, and functional connectivity was strengthened in 5-year-olds compared with 3-year-olds, although the nodes and network connections were not yet mature. The high-correlation network connections in the default mode networks and dorsal attention networks had been significantly strengthened in 5-year-olds vs. 3-year-olds. Further, the salience network in the 3-year-old children included an activated insula/inferior frontal gyrus-anterior cingulate cortex network circu让 and an activated thalamus-parahippocampal-posterior cingulate cortex-subcortical regions network circuit. By the age of 5 years, no des and high-correlation network connections (edges) were reduced in the salience network. Overall, activation of the dorsal attention network, default mode network, left frontoparietal network, and right frontoparietal network increased (the volume of activation increased, the signals strengthened, and the high-correlation connections increased and strengthened) in 5-year-olds compared with 3-year-olds, but activation in some brain nodes weakened or disappeared in the salience network, and the network connections (edges) were reduced. Between the ages of 3 and 5 years, we observed a tendency for function in some brain regions to be strengthened and for the generalization of activation to be reduced, indicating that specialization begins to develop at this time. The study protocol was approved by the local ethics committee of the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences in China with approval No. SIAT-IRB- 131115-H0075 on November 15, 2013.展开更多
In light of ever-present partisan division in the US political system, it is critical that researchers gain a better under-standing of potential biological differences that exist between self-professed Democrats and R...In light of ever-present partisan division in the US political system, it is critical that researchers gain a better under-standing of potential biological differences that exist between self-professed Democrats and Republicans. In the current pilot experiment, we examined differences within the human mirror neuron system (hMNS), a network linked to a host of social and emotional abilities, in a small group of self-identified Republicans and Democrats. We found clear differences between these two groups with respect to resting-state brain connectivity within the hMNS. These neural differences were not systematically related to differences in empathy. Our findings are consistent with the idea that other factors, such as one’s preferential type of social connectivity (broad vs. tight), may have driven the reported findings. These data provide novel insights regarding our knowledge of the biological basis of party identification, and suggest specific directions for future research.展开更多
AIM: To study the changes of the resting state functional connectivity(rsFC) between acute eye pain(EP) subjects and healthy controls(HCs) in the two hemispheres by using voxel-mirrored homotopic connectivity(VMHC) me...AIM: To study the changes of the resting state functional connectivity(rsFC) between acute eye pain(EP) subjects and healthy controls(HCs) in the two hemispheres by using voxel-mirrored homotopic connectivity(VMHC) method.METHODS: Totally 20 patients with EP and 20 HCs were enrolled, sex, age, and education were matched, and all subjects were examined by functional magnetic resonance imaging(fMRI) scans at resting-state. The changes of rs FC between the hemispheres were evaluated by the VMHC method according to Gaussian random field(GRF) theory. In order to identify the VMHC, as biomarkers for distinguishing EP and from HC, the receiver operating characteristic curves(ROC) had been analyzed. The relationships were evaluated with Pearson correlation analysis between the mean VMHC signal values and clinical features in these patients.RESULTS: By comparing with health subjects, the significant decreased VMHC values was observed in lingual/calcarine(Brodmann area, BA 30), precentral/postcentral gyrus(PreCG/PosCG; BA 4) and medial frontal gyrus(MFG; BA 8)(false discovery rate corrected <0.01) in the acute EP individuals. The accuracy of area under curve was excellent indicated by the ROC curve analysis of each brain regions.CONCLUSION: Our study demonstrates preliminary evidence of disrupted interhemispheric rsFC in acute EP in sensorimotor and limbic system and somatosensory cortex, which might give some useful information for understanding the neurological mechanisms in acute EP individuals.展开更多
The main symptom of patients with Alzheimer’s disease is cognitive dysfunction. Alzheimer’s disease is mainly diagnosed based on changes in brain structure. Functional connectivity reflects the synchrony of function...The main symptom of patients with Alzheimer’s disease is cognitive dysfunction. Alzheimer’s disease is mainly diagnosed based on changes in brain structure. Functional connectivity reflects the synchrony of functional activities between non-adjacent brain regions, and changes in functional connectivity appear earlier than those in brain structure. In this study, we detected resting-state functional connectivity changes in patients with Alzheimer’s disease to provide reference evidence for disease prediction. Functional magnetic resonance imaging data from patients with Alzheimer’s disease were used to show whether particular white and gray matter areas had certain functional connectivity patterns and if these patterns changed with disease severity. In nine white and corresponding gray matter regions, correlations of normal cognition, early mild cognitive impairment, and late mild cognitive impairment with blood oxygen level-dependent signal time series were detected. Average correlation coefficient analysis indicated functional connectivity patterns between white and gray matter in the resting state of patients with Alzheimer’s disease. Functional connectivity pattern variation correlated with disease severity, with some regions having relatively strong or weak correlations. We found that the correlation coefficients of five regions were 0.3–0.5 in patients with normal cognition and 0–0.2 in those developing Alzheimer’s disease. Moreover, in the other four regions, the range increased to 0.45–0.7 with increasing cognitive impairment. In some white and gray matter areas, there were specific connectivity patterns. Changes in regional white and gray matter connectivity patterns may be used to predict Alzheimer’s disease;however, detailed information on specific connectivity patterns is needed. All study data were obtained from the Alzheimer’s Disease Neuroimaging Initiative Library of the Image and Data Archive Database.展开更多
This study investigated the changes in interhemispheric functional connectivity (FC) of the whole brain in open globe injury (OGI) patients, using voxel-mirrored homotopic connectivity (VMHC), and their relation...This study investigated the changes in interhemispheric functional connectivity (FC) of the whole brain in open globe injury (OGI) patients, using voxel-mirrored homotopic connectivity (VMHC), and their relationships with clinical features. Totally, 16 male and 2 female acute OGI patients and 18 sex, age, and education-matched healthy volunteers were enrolled in the study. All subjects were scanned through functional magnetic resonance imaging (fMRI). Receiver operating characteristic (ROC) curves analyses had been used to identify the VMHC in these brain areas could be used as biomarkers to distinguish OGI and from healthy control (HC). The mean VMHC values in multiple brain areas and clinical OGI manifestations were evaluated with a Pearson correlation analysis. OGI patients had significantly decreased VMHC in the bilateral calcarine/lingual/cuneus (BA18, 19, 30) and middle occipital gyrus (BA18, 19). The OGI patients had abnormal interhemispheric FC in the dorsal visual pathway, which may represent the pathophysiological mechanism that underlies acute vision loss after OGI.展开更多
Age-related changes in the brain connectivity of healthy older adults have been widely studied in recent years,with some differences in the obtained results.Most of these studies showed decreases in general functional...Age-related changes in the brain connectivity of healthy older adults have been widely studied in recent years,with some differences in the obtained results.Most of these studies showed decreases in general functional connectivity,but they also found increases in some particular regions and areas.Frequently,these studies compared young individuals with older subjects,but few studies compared different age groups only in older populations.The purpose of this study is to analyze whole-brain functional connectivity in healthy older adult groups and its network characteristics through functional segregation.A total of 114 individuals,48 to 89 years old,were scanned using resting-state functional magnetic resonance imaging in a resting state paradigm and were divided into six different age groups(<60,60–64,65–69,70–74,75–79,≥80 years old).A partial correlation analysis,a pooled correlation analysis and a study of 3-cycle regions with prominent connectivity were conducted.Our results showed progressive diminution in the functional connectivity among different age groups and this was particularly pronounced between 75 and 79 years old.The oldest group(≥80 years old)showed a slight increase in functional connectivity compared to the other groups.This occurred possibly because of compensatory mechanism in brain functioning.This study provides information on the brain functional characteristics of every age group,with more specific information on the functional progressive decline,and supplies methodological tools to study functional connectivity characteristics.Approval for the study was obtained from the ethics committee of the Comision de Bioetica de la Universidad de Barcelona(approval No.PSI2012-38257)on June 5,2012,and from the ethics committee of the Barcelona’s Hospital Clinic(approval No.2009-5306 and 2011-6604)on October 22,2009 and April 7,2011 respectively.展开更多
Attention deficit hyperactivity disorder(ADHD) is a pervasive psychiatric disorder that affects both children and adults. Adult male and female patients with ADHD are differentially affected, but few studies have ex...Attention deficit hyperactivity disorder(ADHD) is a pervasive psychiatric disorder that affects both children and adults. Adult male and female patients with ADHD are differentially affected, but few studies have explored the differences. The purpose of this study was to quantify differences between adult male and female patients with ADHD based on neuroimaging and connectivity analysis. Resting-state functional magnetic resonance imaging scans were obtained and preprocessed in 82 patients. Group-wise differences between male and female patients were quantified using degree centrality for different brain regions. The medial-, middle-, and inferior-frontal gyrus, superior parietal lobule, precuneus, supramarginal gyrus, superior- and middle-temporal gyrus, middle occipital gyrus, and cuneus were identified as regions with significant group-wise differences. The identified regions were correlated with clinical scores reflecting depression and anxiety and significant correlations were found. Adult ADHD patients exhibit different levels of depression and anxiety depending on sex, and our study provides insight into how changes in brain circuitry might differentially impact male and female ADHD patients.展开更多
The complex relationship between structural connectivity(SC) and functional connectivity(FC) of human brain networks is still a critical problem in neuroscience. In order to investigate the role of SC in shaping resti...The complex relationship between structural connectivity(SC) and functional connectivity(FC) of human brain networks is still a critical problem in neuroscience. In order to investigate the role of SC in shaping resting-state FC, numerous models have been proposed. Here, we use a simple dynamic model based on the susceptible-infected-susceptible(SIS) model along the shortest paths to predict FC from SC. Unlike the previous dynamic model based on SIS theory, we focus on the shortest paths as the principal routes to transmit signals rather than the empirical structural brain network. We first simplify the structurally connected network into an efficient propagation network according to the shortest paths and then combine SIS infection theory with the efficient network to simulate the dynamic process of human brain activity. Finally, we perform an extensive comparison study between the dynamic models embedded in the efficient network, the dynamic model embedded in the structurally connected network and dynamic mean field(DMF) model predicting FC from SC. Extensive experiments on two different resolution datasets indicate that i) the dynamic model simulated on the shortest paths can predict FC among both structurally connected and unconnected node pairs; ii) though there are fewer links in the efficient propagation network, the predictive power of FC derived from the efficient propagation network is better than the dynamic model simulated on a structural brain network; iii) in comparison with the DMF model,the dynamic model embedded in the shortest paths is found to perform better to predict FC.展开更多
Attention deficit and hyperactivity disorder(ADHD) is a disorder characterized by behavioral symptoms including hyperactivity/impulsivity among children,adolescents,and adults.These ADHD related symptoms are influen...Attention deficit and hyperactivity disorder(ADHD) is a disorder characterized by behavioral symptoms including hyperactivity/impulsivity among children,adolescents,and adults.These ADHD related symptoms are influenced by the complex interaction of brain networks which were under explored.We explored age-related brain network differences between ADHD patients and typically developing(TD) subjects using resting state f MRI(rs-f MRI) for three age groups of children,adolescents,and adults.We collected rs-f MRI data from 184 individuals(27 ADHD children and 31 TD children;32 ADHD adolescents and 32 TD adolescents;and 31 ADHD adults and 31 TD adults).The Brainnetome Atlas was used to define nodes in the network analysis.We compared three age groups of ADHD and TD subjects to identify the distinct regions that could explain age-related brain network differences based on degree centrality,a well-known measure of nodal centrality.The left middle temporal gyrus showed significant interaction effects between disease status(i.e.,ADHD or TD) and age(i.e.,child,adolescent,or adult)(P 0.001).Additional regions were identified at a relaxed threshold(P 0.05).Many of the identified regions(the left inferior frontal gyrus,the left middle temporal gyrus,and the left insular gyrus) were related to cognitive function.The results of our study suggest that aberrant development in cognitive brain regions might be associated with age-related brain network changes in ADHD patients.These findings contribute to better understand how brain function influences the symptoms of ADHD.展开更多
Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely u...Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neuro biological markers after mild traumatic brain injury.This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury.G raph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function.However,most previous mild traumatic brain injury studies using graph theory have focused on specific populations,with limited exploration of simultaneous abnormalities in structural and functional connectivity.Given that mild traumatic brain injury is the most common type of traumatic brain injury encounte red in clinical practice,further investigation of the patient characteristics and evolution of structural and functional connectivity is critical.In the present study,we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury.In this longitudinal study,we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 wee ks of injury,as well as 36 healthy controls.Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis.In the acute phase,patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network.More than 3 months of followup data revealed signs of recovery in structural and functional connectivity,as well as cognitive function,in 22 out of the 46 patients.Furthermore,better cognitive function was associated with more efficient networks.Finally,our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury.These findings highlight the importance of integrating structural and functional connectivity in unde rstanding the occurrence and evolution of mild traumatic brain injury.Additionally,exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury.展开更多
Functional magnetic resonance imaging(fMRI)is a popular tool used to investigate not only how the brain responds to specific stimuli during sensorimotor or cognitive tasks,but also brain activity at rest.The physics b...Functional magnetic resonance imaging(fMRI)is a popular tool used to investigate not only how the brain responds to specific stimuli during sensorimotor or cognitive tasks,but also brain activity at rest.The physics beyond this approach is based on the analysis of the blood oxygenation level-dependent signal.展开更多
The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich.The connectivity of carbonate reservoirs is complex,and there is still a lack of clear understanding of the development and ...The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich.The connectivity of carbonate reservoirs is complex,and there is still a lack of clear understanding of the development and topological structure of the pore space in fractured-vuggy reservoirs.Thus,effective prediction of fractured-vuggy reservoirs is difficult.In view of this,this work employs adaptive point cloud technology to reproduce the shape and capture the characteristics of a fractured-vuggy reservoir.To identify the complex connectivity among pores,fractures,and vugs,a simplified one-dimensional connectivity model is established by using the meshless connection element method(CEM).Considering that different types of connection units have different flow characteristics,a sequential coupling calculation method that can efficiently calculate reservoir pressure and saturation is developed.By automatic history matching,the dynamic production data is fitted in real-time,and the characteristic parameters of the connection unit are inverted.Simulation results show that the three-dimensional connectivity model of the fractured-vuggy reservoir built in this work is as close as 90%of the fine grid model,while the dynamic simulation efficiency is much higher with good accuracy.展开更多
AIM:To study functional brain abnormalities in patients with eye trauma(ET)and to discuss the pathophysiological mechanisms of ET.METHODS:Totally 31 ET patients and 31 healthy controls(HCs)were recruited.The age,gende...AIM:To study functional brain abnormalities in patients with eye trauma(ET)and to discuss the pathophysiological mechanisms of ET.METHODS:Totally 31 ET patients and 31 healthy controls(HCs)were recruited.The age,gender,and educational background characteristics of the two groups were similar.After functional magnetic resonance imaging(fMRI)scanning,the subjects’spontaneous brain activity was evaluated with the functional connectivity(FC)method.Receiver operating characteristic(ROC)curve analysis was used to classify the data.Pearson’s correlation analysis was used to explore the relationship between FC values in specific brain regions and clinical behaviors in patients with ET.RESULTS:Significantly increased FC between several regions was identified including the medial prefrontal cortex(MPFC)and left hippocampus formations(HF),the MPFC and left inferior parietal lobule(IPL),the left IPL and left medial temporal lobe(MTL),the left IPL and right MTL,and the right IPL and left MTL.No decreased region-to-region connectivity was detected in default mode network(DMN)sub-regions in patients with ET.Compared with HCs,ET patients exhibited significantly increased FC between several paired DMN regions,as follows:posterior cingulate cortex(PCC)and right HF(HF.R,t=2.196,P=0.032),right inferior parietal cortices(IPC.R)and left MTL(MTL.L,t=2.243,P=0.029),and right MTL(MTL.R)and HF.R(t=2.236,P=0.029).CONCLUSION:FC values in multiple brain regions of ET patients are abnormal,suggesting that these brain regions in ET patients may be dysfunctional,which may help to reveal the pathophysiological mechanisms of ET.展开更多
BACKGROUND Adolescent major depressive disorder(MDD)is a significant mental health concern that often leads to recurrent depression in adulthood.Resting-state functional magnetic resonance imaging(rs-fMRI)offers uniqu...BACKGROUND Adolescent major depressive disorder(MDD)is a significant mental health concern that often leads to recurrent depression in adulthood.Resting-state functional magnetic resonance imaging(rs-fMRI)offers unique insights into the neural mechanisms underlying this condition.However,despite previous research,the specific vulnerable brain regions affected in adolescent MDD patients have not been fully elucidated.AIM To identify consistent vulnerable brain regions in adolescent MDD patients using rs-fMRI and activation likelihood estimation(ALE)meta-analysis.METHODS We performed a comprehensive literature search through July 12,2023,for studies investigating brain functional changes in adolescent MDD patients.We utilized regional homogeneity(ReHo),amplitude of low-frequency fluctuations(ALFF)and fractional ALFF(fALFF)analyses.We compared the regions of aberrant spontaneous neural activity in adolescents with MDD vs healthy controls(HCs)using ALE.RESULTS Ten studies(369 adolescent MDD patients and 313 HCs)were included.Combining the ReHo and ALFF/fALFF data,the results revealed that the activity in the right cuneus and left precuneus was lower in the adolescent MDD patients than in the HCs(voxel size:648 mm3,P<0.05),and no brain region exhibited increased activity.Based on the ALFF data,we found decreased activity in the right cuneus and left precuneus in adolescent MDD patients(voxel size:736 mm3,P<0.05),with no regions exhibiting increased activity.CONCLUSION Through ALE meta-analysis,we consistently identified the right cuneus and left precuneus as vulnerable brain regions in adolescent MDD patients,increasing our understanding of the neuropathology of affected adolescents.展开更多
BACKGROUND Research has found that the amygdala plays a significant role in underlying pathology of major depressive disorder(MDD).However,few studies have explored machine learning-assisted diagnostic biomarkers base...BACKGROUND Research has found that the amygdala plays a significant role in underlying pathology of major depressive disorder(MDD).However,few studies have explored machine learning-assisted diagnostic biomarkers based on amygdala functional connectivity(FC).AIM To investigate the analysis of neuroimaging biomarkers as a streamlined approach for the diagnosis of MDD in adolescents.METHODS Forty-four adolescents diagnosed with MDD and 43 healthy controls were enrolled in the study.Using resting-state functional magnetic resonance imaging,the FC was compared between the adolescents with MDD and the healthy controls,with the bilateral amygdala serving as the seed point,followed by statistical analysis of the results.The support vector machine(SVM)method was then applied to classify functional connections in various brain regions and to evaluate the neurophysiological characteristics associated with MDD.RESULTS Compared to the controls and using the bilateral amygdala as the region of interest,patients with MDD showed significantly lower FC values in the left inferior temporal gyrus,bilateral calcarine,right lingual gyrus,and left superior occipital gyrus.However,there was an increase in the FC value in Vermis-10.The SVM analysis revealed that the reduction in the FC value in the right lingual gyrus could effectively differentiate patients with MDD from healthy controls,achieving a diagnostic accuracy of 83.91%,sensitivity of 79.55%,specificity of 88.37%,and an area under the curve of 67.65%.CONCLUSION The results showed that an abnormal FC value in the right lingual gyrus was effective as a neuroimaging biomarker to distinguish patients with MDD from healthy controls.展开更多
基金supported by the Science and Technology Foundation of Guangdong Province of China,No.2012B031800305
文摘Functional magnetic resonance imaging studies have shown that the insular cortex has a signif- icant role in pain identification and information integration, while the default mode network is associated with cognitive and memory-related aspects of pain perception. However, changes in the functional connectivity between the defauk mode network and insula during pain remain unclear. This study used 3.0 T functional magnetic resonance imaging scans in 12 healthy sub- jects aged 24.8 ± 3.3 years to compare the differences in the functional activity and connectivity of the insula and default mode network between the baseline and pain condition induced by intramuscular injection of hypertonic saline. Compared with the baseline, the insula was more functionally connected with the medial prefrontal and lateral temporal cortices, whereas there was lower connectivity with the posterior cingulate cortex, precuneus and inferior parietal lobule in the pain condition. In addition, compared with baseline, the anterior cingulate cortex exhibited greater connectivity with the posterior insula, but lower connectivity with the anterior insula, during the pain condition. These data indicate that experimental low back pain led to dysfunction in the connectivity between the insula and default mode network resulting from an impairment of the regions of the brain related to cognition and emotion, suggesting the impor- tance of the interaction between these regions in pain processing.
基金supported by the National Natural Science Foundation of China,Nos.81871836(to MZ),82172554(to XH),and 81802249(to XH),81902301(to JW)the National Key R&D Program of China,Nos.2018YFC2001600(to JX)and 2018YFC2001604(to JX)+3 种基金Shanghai Rising Star Program,No.19QA1409000(to MZ)Shanghai Municipal Commission of Health and Family Planning,No.2018YQ02(to MZ)Shanghai Youth Top Talent Development PlanShanghai“Rising Stars of Medical Talent”Youth Development Program,No.RY411.19.01.10(to XH)。
文摘Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.
基金Supported by National Natural Science Foundation of China(No.82160195,No.82460203).
文摘AIM:To analyze whether alterations of voxel mirror homology connectivity(VMHC)values,as determined by resting-state functional magnetic resonance imaging(rsfMRI),occur in cerebral regions of patients with hypertensive retinopathy(HR)and to determine the relationship between VMHC values and clinical characteristics in patients with HR.METHODS:Twenty-one patients with HR and 21 agematched healthy controls(HCs)were assessed by rsfMRI scanning.The functional connectivity between the hemispheres of the cerebrum was assessed by measuring VMHC,with the ability of VMHC to distinguish between the HR and HC groups assessed using receiver operating characteristic(ROC)curve analysis.Differences in the demographic and clinical characteristics of the HR and HC groups were analyzed by independent sample t-tests.The relationship between average VMHC in several brain areas of HR patients and clinical features was determined using Pearson correlation analysis.RESULTS:Mean VMHC values of the bilateral cuneus gyrus(BA19),bilateral middle orbitofrontal gyrus(BA47),bilateral middle temporal gyrus(BA39)and bilateral superior medial frontal gyrus(BA9)were lower in the HR than in the HC group.CONCLUSION:VMHC values can predict the development of early HR,prevent the transformation of hypertensive microangiopathy,and provide useful information explaining the changes in neural mechanism associated with HR.
基金Supported by the Medical Research Project of the Chongqing Municipal Health Commission,No.2024WSJK110.
文摘BACKGROUND Currently,adolescent depression is one of the most significant public health concerns,markedly influencing emotional,cognitive,and social maturation.Despite advancements in distinguish the neurobiological substrates underlying depression,the intricate patterns of disrupted brain network connectivity in adolescents warrant further exploration.AIM To elucidate the neural correlates of adolescent depression by examining brain network connectivity using resting-state functional magnetic resonance imaging(rs-fMRI).METHODS The study cohort comprised 74 depressed adolescents and 59 healthy controls aged 12 to 17 years.Participants underwent rs-fMRI to evaluate functional connectivity within and across critical brain networks,including the visual,default mode network(DMN),dorsal attention,salience,somatomotor,and frontoparietal control networks.RESULTS Analyses revealed pronounced functional disparities within key neural circuits among adolescents with depression.The results demonstrated existence of hemispheric asymmetries characterized by enhanced activity in the left visual network,which contrasted the diminished activity in the right hemisphere.The DMN facilitated increased activity within the left prefrontal cortex and reduced engagement in the right hemisphere,implicating disrupted self-referential and emotional processing mechanisms.Additionally,an overactive right dorsal attention network and a hypoactive salience network were identified,underscoring significant abnormalities in attentional and emotional regulation in adolescent depression.CONCLUSION The findings from this study underscore distinct neural connectivity disruptions in adolescent depression,underscoring the critical role of specific neurobiological markers for precise early diagnosis of adolescent depression.The observed functional asymmetries and network-specific deviations elucidate the complex neurobiological architecture of adolescent depression,supporting the development of targeted therapeutic strategies.
基金This project was supported by grants from National Natural Science Foundation of China(No.81701655 and No.81600317)Platform Research Foundation of Union Hospital,Tongji Medical College,Huazhong university of Science and Technology(No.02.03.2017-14).
文摘Examining the spontaneous BOLD activity to understand the neural mechanism of Parkinson’s disease(PD)with mild cognitive impairment(MCI)is a focus in resting-state functional MRI(rs-fMRI)studies.This study aimed to investigate the alteration of brain functional connectivity in PD with MCI in a systematical way at two levels:functional connectivity analysis within resting state networks(RSNs)and functional network connectivity(FNC)analysis.Using group independent component analysis(ICA)on rs-fMRI data acquired from 30 participants(14 healthy controls and 16 PD patients with MCI),16 RSNs were identified,and functional connectivity analysis within the RSNs and FNC analysis were carried out between groups.Compared to controls,patients with PD showed decreased functional connectivity within putamen network,thalamus network,cerebellar network,attention network,and self-referential network,and increased functional connectivity within execution network.Globally disturbed,mostly increased functional connectivity of FNC was observed in PD group,and insular network and execution network were the dominant network with extensively increased functional connectivity with other RSNs.Cerebellar network showed decreased functional connectivity with caudate network,insular network,and self-referential network.In general,decreased functional connectivity within RSNs and globally disturbed,mostly increased functional connectivity of FNC may be characteristics of PD.Increased functional connectivity within execution network may be an early marker of PD.The multi-perspective study based on RSNs may be a valuable means to assess functional changes corresponding to specific RSN,contributing to the understanding of the neural mechanism of PD.
基金supported by the Natural Science Foundation of Guangdong Province,No.2016A030313180(to FCJ)
文摘Previous studies on brain functional connectivity networks in children have mainly focused on changes in function in specific brain regions, as opposed to whole brain connectivity in healthy children. By analyzing the independent components of activation and network connectivity between brain regions, we examined brain activity status and development trends in children aged 3 and 5 years. These data could provide a reference for brain function rehabilitation in children with illness or abnormal function. We acquired functional magnetic resonance images from 15 3-year-old children and 15 5-year-old children under natural sleep cond让ions. The participants were recruited from five kindergartens in the Nanshan District of Shenzhen City, China. The parents of the participants signed an informed consent form with the premise that they had been fully informed regarding the experimental protocol. We used masked independent component analysis and BrainNet Viewer software to explore the independent components of the brain and correlation connections between brain regions. We identified seven independent components in the two groups of children, including the executive control network, the dorsal attention network, the default mode network, the left frontoparietal network, the right frontoparietal network, the salience network, and the motor network. In the default mode network, the posterior cingulate cortex, medial frontal gyrus, and inferior parietal lobule were activated in both 3- and 5-year-old children, supporting the "three-brain region theory” of the default mode network. In the frontoparietal network, the frontal and parietal gyri were activated in the two groups of children, and functional connectivity was strengthened in 5-year-olds compared with 3-year-olds, although the nodes and network connections were not yet mature. The high-correlation network connections in the default mode networks and dorsal attention networks had been significantly strengthened in 5-year-olds vs. 3-year-olds. Further, the salience network in the 3-year-old children included an activated insula/inferior frontal gyrus-anterior cingulate cortex network circu让 and an activated thalamus-parahippocampal-posterior cingulate cortex-subcortical regions network circuit. By the age of 5 years, no des and high-correlation network connections (edges) were reduced in the salience network. Overall, activation of the dorsal attention network, default mode network, left frontoparietal network, and right frontoparietal network increased (the volume of activation increased, the signals strengthened, and the high-correlation connections increased and strengthened) in 5-year-olds compared with 3-year-olds, but activation in some brain nodes weakened or disappeared in the salience network, and the network connections (edges) were reduced. Between the ages of 3 and 5 years, we observed a tendency for function in some brain regions to be strengthened and for the generalization of activation to be reduced, indicating that specialization begins to develop at this time. The study protocol was approved by the local ethics committee of the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences in China with approval No. SIAT-IRB- 131115-H0075 on November 15, 2013.
文摘In light of ever-present partisan division in the US political system, it is critical that researchers gain a better under-standing of potential biological differences that exist between self-professed Democrats and Republicans. In the current pilot experiment, we examined differences within the human mirror neuron system (hMNS), a network linked to a host of social and emotional abilities, in a small group of self-identified Republicans and Democrats. We found clear differences between these two groups with respect to resting-state brain connectivity within the hMNS. These neural differences were not systematically related to differences in empathy. Our findings are consistent with the idea that other factors, such as one’s preferential type of social connectivity (broad vs. tight), may have driven the reported findings. These data provide novel insights regarding our knowledge of the biological basis of party identification, and suggest specific directions for future research.
基金Supported by National Natural Science Foundation of China(No.81660158 No.81400372)+1 种基金Natural Science Key Project of Jiangxi Province(No.20161ACB21017)Health Development Planning Commission Science Foundation of Jiangxi Province(No.20175116)
文摘AIM: To study the changes of the resting state functional connectivity(rsFC) between acute eye pain(EP) subjects and healthy controls(HCs) in the two hemispheres by using voxel-mirrored homotopic connectivity(VMHC) method.METHODS: Totally 20 patients with EP and 20 HCs were enrolled, sex, age, and education were matched, and all subjects were examined by functional magnetic resonance imaging(fMRI) scans at resting-state. The changes of rs FC between the hemispheres were evaluated by the VMHC method according to Gaussian random field(GRF) theory. In order to identify the VMHC, as biomarkers for distinguishing EP and from HC, the receiver operating characteristic curves(ROC) had been analyzed. The relationships were evaluated with Pearson correlation analysis between the mean VMHC signal values and clinical features in these patients.RESULTS: By comparing with health subjects, the significant decreased VMHC values was observed in lingual/calcarine(Brodmann area, BA 30), precentral/postcentral gyrus(PreCG/PosCG; BA 4) and medial frontal gyrus(MFG; BA 8)(false discovery rate corrected <0.01) in the acute EP individuals. The accuracy of area under curve was excellent indicated by the ROC curve analysis of each brain regions.CONCLUSION: Our study demonstrates preliminary evidence of disrupted interhemispheric rsFC in acute EP in sensorimotor and limbic system and somatosensory cortex, which might give some useful information for understanding the neurological mechanisms in acute EP individuals.
基金supported by the National Natural Science Foundation of China,No.61401308,61572063(both to XHW)the Natural Science Foundation of Beijing of China,No.L172055(to XHW)+3 种基金the Beijing Municipal Science&Technology Commission Research Fund of China,No.Z171100000417004(to XHW)the China Postdoctoral Fund,No.2018M631755(to XHW)the Special Fund for Improving Comprehensive Strength of Hebei University in the Midwest of China,No.801260201011(to XHW)the High-Level Talent Funding Project—Selective Post-doctoral Research Project Fund of Hebei Province of China,No.B2018003002(to XHW)
文摘The main symptom of patients with Alzheimer’s disease is cognitive dysfunction. Alzheimer’s disease is mainly diagnosed based on changes in brain structure. Functional connectivity reflects the synchrony of functional activities between non-adjacent brain regions, and changes in functional connectivity appear earlier than those in brain structure. In this study, we detected resting-state functional connectivity changes in patients with Alzheimer’s disease to provide reference evidence for disease prediction. Functional magnetic resonance imaging data from patients with Alzheimer’s disease were used to show whether particular white and gray matter areas had certain functional connectivity patterns and if these patterns changed with disease severity. In nine white and corresponding gray matter regions, correlations of normal cognition, early mild cognitive impairment, and late mild cognitive impairment with blood oxygen level-dependent signal time series were detected. Average correlation coefficient analysis indicated functional connectivity patterns between white and gray matter in the resting state of patients with Alzheimer’s disease. Functional connectivity pattern variation correlated with disease severity, with some regions having relatively strong or weak correlations. We found that the correlation coefficients of five regions were 0.3–0.5 in patients with normal cognition and 0–0.2 in those developing Alzheimer’s disease. Moreover, in the other four regions, the range increased to 0.45–0.7 with increasing cognitive impairment. In some white and gray matter areas, there were specific connectivity patterns. Changes in regional white and gray matter connectivity patterns may be used to predict Alzheimer’s disease;however, detailed information on specific connectivity patterns is needed. All study data were obtained from the Alzheimer’s Disease Neuroimaging Initiative Library of the Image and Data Archive Database.
基金Supported by the National Natural Science Foundation of China(No.81660158No.81400372)+1 种基金Natural Science Key Project of Jiangxi Province(No.20161ACB21017)Health Development Planning Commission Science Foundation of Jiangxi Province(No.20175116)
文摘This study investigated the changes in interhemispheric functional connectivity (FC) of the whole brain in open globe injury (OGI) patients, using voxel-mirrored homotopic connectivity (VMHC), and their relationships with clinical features. Totally, 16 male and 2 female acute OGI patients and 18 sex, age, and education-matched healthy volunteers were enrolled in the study. All subjects were scanned through functional magnetic resonance imaging (fMRI). Receiver operating characteristic (ROC) curves analyses had been used to identify the VMHC in these brain areas could be used as biomarkers to distinguish OGI and from healthy control (HC). The mean VMHC values in multiple brain areas and clinical OGI manifestations were evaluated with a Pearson correlation analysis. OGI patients had significantly decreased VMHC in the bilateral calcarine/lingual/cuneus (BA18, 19, 30) and middle occipital gyrus (BA18, 19). The OGI patients had abnormal interhemispheric FC in the dorsal visual pathway, which may represent the pathophysiological mechanism that underlies acute vision loss after OGI.
基金the Grup de Recerca en Tecniques Estadistiques Avancades Aplicades a la Psicologia(GTEAAP)members of the Generalitat de Catalunya’s 2014 SGR 326 Consolidated Research Group(GRC)the PSI2013-41400-P project of Ministerio de Economia y Competitividad of the Spanish Government
文摘Age-related changes in the brain connectivity of healthy older adults have been widely studied in recent years,with some differences in the obtained results.Most of these studies showed decreases in general functional connectivity,but they also found increases in some particular regions and areas.Frequently,these studies compared young individuals with older subjects,but few studies compared different age groups only in older populations.The purpose of this study is to analyze whole-brain functional connectivity in healthy older adult groups and its network characteristics through functional segregation.A total of 114 individuals,48 to 89 years old,were scanned using resting-state functional magnetic resonance imaging in a resting state paradigm and were divided into six different age groups(<60,60–64,65–69,70–74,75–79,≥80 years old).A partial correlation analysis,a pooled correlation analysis and a study of 3-cycle regions with prominent connectivity were conducted.Our results showed progressive diminution in the functional connectivity among different age groups and this was particularly pronounced between 75 and 79 years old.The oldest group(≥80 years old)showed a slight increase in functional connectivity compared to the other groups.This occurred possibly because of compensatory mechanism in brain functioning.This study provides information on the brain functional characteristics of every age group,with more specific information on the functional progressive decline,and supplies methodological tools to study functional connectivity characteristics.Approval for the study was obtained from the ethics committee of the Comision de Bioetica de la Universidad de Barcelona(approval No.PSI2012-38257)on June 5,2012,and from the ethics committee of the Barcelona’s Hospital Clinic(approval No.2009-5306 and 2011-6604)on October 22,2009 and April 7,2011 respectively.
基金supported in part by the Institute for Basic Science(to HP)No.IBS-R015-D1
文摘Attention deficit hyperactivity disorder(ADHD) is a pervasive psychiatric disorder that affects both children and adults. Adult male and female patients with ADHD are differentially affected, but few studies have explored the differences. The purpose of this study was to quantify differences between adult male and female patients with ADHD based on neuroimaging and connectivity analysis. Resting-state functional magnetic resonance imaging scans were obtained and preprocessed in 82 patients. Group-wise differences between male and female patients were quantified using degree centrality for different brain regions. The medial-, middle-, and inferior-frontal gyrus, superior parietal lobule, precuneus, supramarginal gyrus, superior- and middle-temporal gyrus, middle occipital gyrus, and cuneus were identified as regions with significant group-wise differences. The identified regions were correlated with clinical scores reflecting depression and anxiety and significant correlations were found. Adult ADHD patients exhibit different levels of depression and anxiety depending on sex, and our study provides insight into how changes in brain circuitry might differentially impact male and female ADHD patients.
基金supported by China Scholarship Council(201306455001)the National Natural Science Foundation of China(61271407)the Fundamental Research Funds for the Central Universities(16CX06050A)
文摘The complex relationship between structural connectivity(SC) and functional connectivity(FC) of human brain networks is still a critical problem in neuroscience. In order to investigate the role of SC in shaping resting-state FC, numerous models have been proposed. Here, we use a simple dynamic model based on the susceptible-infected-susceptible(SIS) model along the shortest paths to predict FC from SC. Unlike the previous dynamic model based on SIS theory, we focus on the shortest paths as the principal routes to transmit signals rather than the empirical structural brain network. We first simplify the structurally connected network into an efficient propagation network according to the shortest paths and then combine SIS infection theory with the efficient network to simulate the dynamic process of human brain activity. Finally, we perform an extensive comparison study between the dynamic models embedded in the efficient network, the dynamic model embedded in the structurally connected network and dynamic mean field(DMF) model predicting FC from SC. Extensive experiments on two different resolution datasets indicate that i) the dynamic model simulated on the shortest paths can predict FC among both structurally connected and unconnected node pairs; ii) though there are fewer links in the efficient propagation network, the predictive power of FC derived from the efficient propagation network is better than the dynamic model simulated on a structural brain network; iii) in comparison with the DMF model,the dynamic model embedded in the shortest paths is found to perform better to predict FC.
基金supported by the Institute for Basic Science[grant No.IBS-R015-D1]the National Research Foundation of Korea(grant No.NRF-2016R1A2B4008545)
文摘Attention deficit and hyperactivity disorder(ADHD) is a disorder characterized by behavioral symptoms including hyperactivity/impulsivity among children,adolescents,and adults.These ADHD related symptoms are influenced by the complex interaction of brain networks which were under explored.We explored age-related brain network differences between ADHD patients and typically developing(TD) subjects using resting state f MRI(rs-f MRI) for three age groups of children,adolescents,and adults.We collected rs-f MRI data from 184 individuals(27 ADHD children and 31 TD children;32 ADHD adolescents and 32 TD adolescents;and 31 ADHD adults and 31 TD adults).The Brainnetome Atlas was used to define nodes in the network analysis.We compared three age groups of ADHD and TD subjects to identify the distinct regions that could explain age-related brain network differences based on degree centrality,a well-known measure of nodal centrality.The left middle temporal gyrus showed significant interaction effects between disease status(i.e.,ADHD or TD) and age(i.e.,child,adolescent,or adult)(P 0.001).Additional regions were identified at a relaxed threshold(P 0.05).Many of the identified regions(the left inferior frontal gyrus,the left middle temporal gyrus,and the left insular gyrus) were related to cognitive function.The results of our study suggest that aberrant development in cognitive brain regions might be associated with age-related brain network changes in ADHD patients.These findings contribute to better understand how brain function influences the symptoms of ADHD.
基金supported by the National Natural Science Foundation of China,Nos.81671671(to JL),61971451(to JL),U22A2034(to XK),62177047(to XK)the National Defense Science and Technology Collaborative Innovation Major Project of Central South University,No.2021gfcx05(to JL)+6 种基金Clinical Research Cen terfor Medical Imaging of Hunan Province,No.2020SK4001(to JL)Key Emergency Project of Pneumonia Epidemic of Novel Coronavirus Infection of Hu nan Province,No.2020SK3006(to JL)Innovative Special Construction Foundation of Hunan Province,No.2019SK2131(to JL)the Science and Technology lnnovation Program of Hunan Province,Nos.2021RC4016(to JL),2021SK53503(to ML)Scientific Research Program of Hunan Commission of Health,No.202209044797(to JL)Central South University Research Program of Advanced Interdisciplinary Studies,No.2023Q YJC020(to XK)the Natural Science Foundation of Hunan Province,No.2022JJ30814(to ML)。
文摘Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neuro biological markers after mild traumatic brain injury.This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury.G raph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function.However,most previous mild traumatic brain injury studies using graph theory have focused on specific populations,with limited exploration of simultaneous abnormalities in structural and functional connectivity.Given that mild traumatic brain injury is the most common type of traumatic brain injury encounte red in clinical practice,further investigation of the patient characteristics and evolution of structural and functional connectivity is critical.In the present study,we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury.In this longitudinal study,we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 wee ks of injury,as well as 36 healthy controls.Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis.In the acute phase,patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network.More than 3 months of followup data revealed signs of recovery in structural and functional connectivity,as well as cognitive function,in 22 out of the 46 patients.Furthermore,better cognitive function was associated with more efficient networks.Finally,our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury.These findings highlight the importance of integrating structural and functional connectivity in unde rstanding the occurrence and evolution of mild traumatic brain injury.Additionally,exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury.
文摘Functional magnetic resonance imaging(fMRI)is a popular tool used to investigate not only how the brain responds to specific stimuli during sensorimotor or cognitive tasks,but also brain activity at rest.The physics beyond this approach is based on the analysis of the blood oxygenation level-dependent signal.
基金funded by the Natural Science Foundation of Xinjiang Uygur Autonomous Region (No.2022D01A330)the CNPC (China National Petroleum Corporation)Scientific Research and Technology Development Project (Grant No.2021DJ1501)+1 种基金National Natural Science Foundation Project (No.52274030)“Tianchi Talent”Introduction Plan of Xinjiang Uygur Autonomous Region (2022).
文摘The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich.The connectivity of carbonate reservoirs is complex,and there is still a lack of clear understanding of the development and topological structure of the pore space in fractured-vuggy reservoirs.Thus,effective prediction of fractured-vuggy reservoirs is difficult.In view of this,this work employs adaptive point cloud technology to reproduce the shape and capture the characteristics of a fractured-vuggy reservoir.To identify the complex connectivity among pores,fractures,and vugs,a simplified one-dimensional connectivity model is established by using the meshless connection element method(CEM).Considering that different types of connection units have different flow characteristics,a sequential coupling calculation method that can efficiently calculate reservoir pressure and saturation is developed.By automatic history matching,the dynamic production data is fitted in real-time,and the characteristic parameters of the connection unit are inverted.Simulation results show that the three-dimensional connectivity model of the fractured-vuggy reservoir built in this work is as close as 90%of the fine grid model,while the dynamic simulation efficiency is much higher with good accuracy.
基金Supported by National Natural Science Foundation of China(No.82160195,No.82460203)Key R&D Program of Jiangxi Province(No.20223BBH80014)+1 种基金Science and Technology Project of Jiangxi Province Health Commission of Traditional Chinese Medicine(No.2022B258)Science and Technology Project of Jiangxi Health Commission(No.202210017).
文摘AIM:To study functional brain abnormalities in patients with eye trauma(ET)and to discuss the pathophysiological mechanisms of ET.METHODS:Totally 31 ET patients and 31 healthy controls(HCs)were recruited.The age,gender,and educational background characteristics of the two groups were similar.After functional magnetic resonance imaging(fMRI)scanning,the subjects’spontaneous brain activity was evaluated with the functional connectivity(FC)method.Receiver operating characteristic(ROC)curve analysis was used to classify the data.Pearson’s correlation analysis was used to explore the relationship between FC values in specific brain regions and clinical behaviors in patients with ET.RESULTS:Significantly increased FC between several regions was identified including the medial prefrontal cortex(MPFC)and left hippocampus formations(HF),the MPFC and left inferior parietal lobule(IPL),the left IPL and left medial temporal lobe(MTL),the left IPL and right MTL,and the right IPL and left MTL.No decreased region-to-region connectivity was detected in default mode network(DMN)sub-regions in patients with ET.Compared with HCs,ET patients exhibited significantly increased FC between several paired DMN regions,as follows:posterior cingulate cortex(PCC)and right HF(HF.R,t=2.196,P=0.032),right inferior parietal cortices(IPC.R)and left MTL(MTL.L,t=2.243,P=0.029),and right MTL(MTL.R)and HF.R(t=2.236,P=0.029).CONCLUSION:FC values in multiple brain regions of ET patients are abnormal,suggesting that these brain regions in ET patients may be dysfunctional,which may help to reveal the pathophysiological mechanisms of ET.
基金Supported by The 2024 Guizhou Provincial Health Commission Science and Technology Fund Project,No.gzwkj2024-47502022 Provincial Clinical Key Specialty Construction Project。
文摘BACKGROUND Adolescent major depressive disorder(MDD)is a significant mental health concern that often leads to recurrent depression in adulthood.Resting-state functional magnetic resonance imaging(rs-fMRI)offers unique insights into the neural mechanisms underlying this condition.However,despite previous research,the specific vulnerable brain regions affected in adolescent MDD patients have not been fully elucidated.AIM To identify consistent vulnerable brain regions in adolescent MDD patients using rs-fMRI and activation likelihood estimation(ALE)meta-analysis.METHODS We performed a comprehensive literature search through July 12,2023,for studies investigating brain functional changes in adolescent MDD patients.We utilized regional homogeneity(ReHo),amplitude of low-frequency fluctuations(ALFF)and fractional ALFF(fALFF)analyses.We compared the regions of aberrant spontaneous neural activity in adolescents with MDD vs healthy controls(HCs)using ALE.RESULTS Ten studies(369 adolescent MDD patients and 313 HCs)were included.Combining the ReHo and ALFF/fALFF data,the results revealed that the activity in the right cuneus and left precuneus was lower in the adolescent MDD patients than in the HCs(voxel size:648 mm3,P<0.05),and no brain region exhibited increased activity.Based on the ALFF data,we found decreased activity in the right cuneus and left precuneus in adolescent MDD patients(voxel size:736 mm3,P<0.05),with no regions exhibiting increased activity.CONCLUSION Through ALE meta-analysis,we consistently identified the right cuneus and left precuneus as vulnerable brain regions in adolescent MDD patients,increasing our understanding of the neuropathology of affected adolescents.
文摘BACKGROUND Research has found that the amygdala plays a significant role in underlying pathology of major depressive disorder(MDD).However,few studies have explored machine learning-assisted diagnostic biomarkers based on amygdala functional connectivity(FC).AIM To investigate the analysis of neuroimaging biomarkers as a streamlined approach for the diagnosis of MDD in adolescents.METHODS Forty-four adolescents diagnosed with MDD and 43 healthy controls were enrolled in the study.Using resting-state functional magnetic resonance imaging,the FC was compared between the adolescents with MDD and the healthy controls,with the bilateral amygdala serving as the seed point,followed by statistical analysis of the results.The support vector machine(SVM)method was then applied to classify functional connections in various brain regions and to evaluate the neurophysiological characteristics associated with MDD.RESULTS Compared to the controls and using the bilateral amygdala as the region of interest,patients with MDD showed significantly lower FC values in the left inferior temporal gyrus,bilateral calcarine,right lingual gyrus,and left superior occipital gyrus.However,there was an increase in the FC value in Vermis-10.The SVM analysis revealed that the reduction in the FC value in the right lingual gyrus could effectively differentiate patients with MDD from healthy controls,achieving a diagnostic accuracy of 83.91%,sensitivity of 79.55%,specificity of 88.37%,and an area under the curve of 67.65%.CONCLUSION The results showed that an abnormal FC value in the right lingual gyrus was effective as a neuroimaging biomarker to distinguish patients with MDD from healthy controls.