In this paper ,in the space that possesses restoring nucleus, we obtain analyticsolutions in the series form for the steady-state convection diffusion equation The solutions have the following characteristics: (1) the...In this paper ,in the space that possesses restoring nucleus, we obtain analyticsolutions in the series form for the steady-state convection diffusion equation The solutions have the following characteristics: (1) they ave given in the accurate form:(2)they can be calculated in the explicit way, without solving the eguations;(3) the error of the approximate solution will be monotonically decreased under the meaning of the norm of the spaces when a cardinal term is added in the procedure of numerical solution .Finally, we calculated the example in [2] the result shows that our solution is more accurate than that in [2].展开更多
In this paper we make a close study of the finite analytic method by means of the maximum principles in differential equations and give the proof of the stability and convergence of the finite analytic method.
文摘In this paper ,in the space that possesses restoring nucleus, we obtain analyticsolutions in the series form for the steady-state convection diffusion equation The solutions have the following characteristics: (1) they ave given in the accurate form:(2)they can be calculated in the explicit way, without solving the eguations;(3) the error of the approximate solution will be monotonically decreased under the meaning of the norm of the spaces when a cardinal term is added in the procedure of numerical solution .Finally, we calculated the example in [2] the result shows that our solution is more accurate than that in [2].
文摘In this paper we make a close study of the finite analytic method by means of the maximum principles in differential equations and give the proof of the stability and convergence of the finite analytic method.