Based on the background of structural protection and Disaster Reduction Engineering, the dynamic behaviour and failure mechanism of restrained beams in portal steel frames in localised fire are investigated via experi...Based on the background of structural protection and Disaster Reduction Engineering, the dynamic behaviour and failure mechanism of restrained beams in portal steel frames in localised fire are investigated via experimental measurement and numerical simulation techniques. Comprehensive parametric studies are carried out to discuss the influence of end connection types, temperature, impact velocity,impact mass and span-to-depth ratio(SDR) on the dynamic response of the beams. The characteristics of deformation, internal force and energy distribution about the restrained beams and its joints are investigated. A temperature dependent criterion for evaluating the frame joint performance is proposed to measure the degree of performance degradation and impact resistance of the joint. The dynamic displacement amplification factor in different temperature environments are proposed for the different beam end constraint types and SDRs. Results of the experimental and numerical analysis show that the welded connection(WC) of three typical joint types is the strongest, and the extended endplate connection(EEC) is the weakest in terms of the impact resistance performance. With regard to the failure mode of the joint, the failure positions of the WC and the welded-bolted connection are located in the inner web of the column. Meanwhile, the EEC is located in the connection position between the beam and the endplate. Three different internal force stages and two obvious critical temperature boundaries of the restrained beams emerge with the increase in temperature, and they have significant characteristics in terms of deformation trend, internal force transfer and energy distribution. During the impact, a phenomenon known as “compression arch action” develops into “catenary action” with the increase in deflection in the frame beam mechanism.展开更多
The changing law of internal forces during the whole deformation development process was analyzed. The process was divided into five stages based on the internal force state of the beam and the assumptions of internal...The changing law of internal forces during the whole deformation development process was analyzed. The process was divided into five stages based on the internal force state of the beam and the assumptions of internal force relationship of five stages were proposed. Then, the formulas for determining the midspan deflection of the steel beam under distributed load, which was restrained both in rotational and axial directions, were obtained using restraint coefficient method and rigid-plastic mechanism, thereby the deformation development process was expressed accurately in a quantified way. Priority was given to the analysis of the process from bending to tension-bending, then the final state totally depends on tension to resist the external loads, that is the problem of catenary action of the restrained beam under distributed load. Additionally, finite element analysis was carried out with soitware ABAQUS6.7 on a restrained steel beam under distributed load with different axial and rotational restraint coefficients. The accuracy of the formulas presented was verified by the results of the behavior of the restrained beams. Finally, error analysis was conducted and some formulas were corrected according to the reasons of errors. The calculated results of corrected formulas match the FEM analysis results better, thus the accuracy of these formulas is improve .展开更多
基金supported by the National natural Science Foundation of China [grant numbers 12172198, 11272189 and 52078283]Youth Innovation Technology Project of Higher School in Shandong Province [grant number 2019KJG015]。
文摘Based on the background of structural protection and Disaster Reduction Engineering, the dynamic behaviour and failure mechanism of restrained beams in portal steel frames in localised fire are investigated via experimental measurement and numerical simulation techniques. Comprehensive parametric studies are carried out to discuss the influence of end connection types, temperature, impact velocity,impact mass and span-to-depth ratio(SDR) on the dynamic response of the beams. The characteristics of deformation, internal force and energy distribution about the restrained beams and its joints are investigated. A temperature dependent criterion for evaluating the frame joint performance is proposed to measure the degree of performance degradation and impact resistance of the joint. The dynamic displacement amplification factor in different temperature environments are proposed for the different beam end constraint types and SDRs. Results of the experimental and numerical analysis show that the welded connection(WC) of three typical joint types is the strongest, and the extended endplate connection(EEC) is the weakest in terms of the impact resistance performance. With regard to the failure mode of the joint, the failure positions of the WC and the welded-bolted connection are located in the inner web of the column. Meanwhile, the EEC is located in the connection position between the beam and the endplate. Three different internal force stages and two obvious critical temperature boundaries of the restrained beams emerge with the increase in temperature, and they have significant characteristics in terms of deformation trend, internal force transfer and energy distribution. During the impact, a phenomenon known as “compression arch action” develops into “catenary action” with the increase in deflection in the frame beam mechanism.
基金Project(2006BAJ01B02)supported by the National Science and Technology Pillar Program during the Eleventh Five-Year Plan Period of China
文摘The changing law of internal forces during the whole deformation development process was analyzed. The process was divided into five stages based on the internal force state of the beam and the assumptions of internal force relationship of five stages were proposed. Then, the formulas for determining the midspan deflection of the steel beam under distributed load, which was restrained both in rotational and axial directions, were obtained using restraint coefficient method and rigid-plastic mechanism, thereby the deformation development process was expressed accurately in a quantified way. Priority was given to the analysis of the process from bending to tension-bending, then the final state totally depends on tension to resist the external loads, that is the problem of catenary action of the restrained beam under distributed load. Additionally, finite element analysis was carried out with soitware ABAQUS6.7 on a restrained steel beam under distributed load with different axial and rotational restraint coefficients. The accuracy of the formulas presented was verified by the results of the behavior of the restrained beams. Finally, error analysis was conducted and some formulas were corrected according to the reasons of errors. The calculated results of corrected formulas match the FEM analysis results better, thus the accuracy of these formulas is improve .