The present manuscript examines the circular restricted gravitational three-body problem (CRGTBP) by the introduction of a new approach through the power series method. In addition, certain computational algorithms wi...The present manuscript examines the circular restricted gravitational three-body problem (CRGTBP) by the introduction of a new approach through the power series method. In addition, certain computational algorithms with the aid of Mathematica software are specifically designed for the problem. The algorithms or rather mathematical modules are established to determine the velocity and position of the third body’s motion. In fact, the modules led to accurate results and thus proved the new approach to be efficient.展开更多
Necessary and sufficient conditions are derived for some matrix equations that have a common least-squares solution.A general expression is provided when certain resolvable conditions are satisfied.This research exten...Necessary and sufficient conditions are derived for some matrix equations that have a common least-squares solution.A general expression is provided when certain resolvable conditions are satisfied.This research extends existing work in the literature.展开更多
This paper presents a new highly parallel algorithm for computing the minimum-norm least-squares solution of inconsistent linear equations Ax = b(A∈Rm×n,b∈R (A)). By this algorithm the solution x = A + b is obt...This paper presents a new highly parallel algorithm for computing the minimum-norm least-squares solution of inconsistent linear equations Ax = b(A∈Rm×n,b∈R (A)). By this algorithm the solution x = A + b is obtained in T = n(log2m + log2(n - r + 1) + 5) + log2m + 1 steps with P=mn processors when m × 2(n - 1) and with P = 2n(n - 1) processors otherwise.展开更多
This paper studies several problems , which are potentially relevant for the construction of adaptive numerical schemes. First, biorthogonal spline wavelets on [0,1] are chosen as a starting point for characterization...This paper studies several problems , which are potentially relevant for the construction of adaptive numerical schemes. First, biorthogonal spline wavelets on [0,1] are chosen as a starting point for characterizations of functions in Besom spaces B(?)(0,1) with 0<σ<∞ and (1+σ)-1<γ<∞. Such function spaces are known to be related to nonlinear approximation. Then so called restricted nonlinear approximation procedures with respect to Sobolev space norms are considered. Besides characterization results Jackson type estimates for various tree-type and tresholding algorithms are investigated. Finally known approximation results for geometry induced singularity functions of boundary integeral equations are combined with the characterization results for restricted nonlinear approximation to show Besov space regularity results.展开更多
In this paper, a transportation problem with an objective function as the sum of a linear and fractional function is considered. The linear function represents the total transportation cost incurred when the goods are...In this paper, a transportation problem with an objective function as the sum of a linear and fractional function is considered. The linear function represents the total transportation cost incurred when the goods are shipped from various sources to the destinations and the fractional function gives the ratio of sales tax to the total public expenditure. Our objective is to determine the transportation schedule which minimizes the sum of total transportation cost and ratio of total sales tax paid to the total public expenditure. Sometimes, situations arise where either reserve stocks have to be kept at the supply points, for emergencies or there may be extra demand in the markets. In such situations, the total flow needs to be controlled or enhanced. In this paper, a special class of transportation problems is studied where in the total transportation flow is restricted to a known specified level. A related transportation problem is formulated and it is shown that to each basic feasible solution which is called corner feasible solution to related transportation problem, there is a corresponding feasible solution to this restricted flow problem. The optimal solution to restricted flow problem may be obtained from the optimal solution to related transportation problem. An algorithm is presented to solve a capacitated linear plus linear fractional transportation problem with restricted flow. The algorithm is supported by a real life example of a manufacturing company.展开更多
Recently,the authors proposed a low-cost approach,named Optimization Approach for Linear Systems(OPALS)for solving any kind of a consistent linear system regarding the structure,characteristics,and dimension of the co...Recently,the authors proposed a low-cost approach,named Optimization Approach for Linear Systems(OPALS)for solving any kind of a consistent linear system regarding the structure,characteristics,and dimension of the coefficient matrix A.The results obtained by this approach for matrices with no structure and with indefinite symmetric part were encouraging when compare with other recent and well-known techniques.In this work,we proposed to extend the OPALS approach for solving the Linear Least-Squares Problem(LLSP)and the Minimum Norm Linear System Problem(MNLSP)using any iterative low-cost gradient-type method,avoiding the construction of the matrices AT A or AAT,and taking full advantage of the structure and form of the gradient of the proposed nonlinear objective function in the gradient direction.The combination of those conditions together with the choice of the initial iterate allow us to produce a novel and efficient low-cost numerical scheme for solving both problems.Moreover,the scheme presented in this work can also be used and extended for the weighted minimum norm linear systems and minimum norm linear least-squares problems.We include encouraging numerical results to illustrate the practical behavior of the proposed schemes.展开更多
Least-squares solution of AXB = D with respect to symmetric positive semidefinite matrix X is considered. By making use of the generalized singular value decomposition, we derive general analytic formulas, and present...Least-squares solution of AXB = D with respect to symmetric positive semidefinite matrix X is considered. By making use of the generalized singular value decomposition, we derive general analytic formulas, and present necessary and sufficient conditions for guaranteeing the existence of the solution. By applying MATLAB 5.2, we give some numerical examples to show the feasibility and accuracy of this construction technique in the finite precision arithmetic.展开更多
In this paper,the Hermitian reflexive(Anti-Hermitian reflexive)least-squares so-lutions of matrix equations(AX = B,XC = D)are considered.With special properties of partitioned matrices and Hermitian reflexive(Ant...In this paper,the Hermitian reflexive(Anti-Hermitian reflexive)least-squares so-lutions of matrix equations(AX = B,XC = D)are considered.With special properties of partitioned matrices and Hermitian reflexive(Anti-Hermitian reflexive)matrices,the general expression of the solution is obtained.Moreover,the related optimal approximation problem to a given matrix over the solution set is considered.展开更多
文摘The present manuscript examines the circular restricted gravitational three-body problem (CRGTBP) by the introduction of a new approach through the power series method. In addition, certain computational algorithms with the aid of Mathematica software are specifically designed for the problem. The algorithms or rather mathematical modules are established to determine the velocity and position of the third body’s motion. In fact, the modules led to accurate results and thus proved the new approach to be efficient.
文摘Necessary and sufficient conditions are derived for some matrix equations that have a common least-squares solution.A general expression is provided when certain resolvable conditions are satisfied.This research extends existing work in the literature.
基金This project is supported by the National Natural Science Foundation of China
文摘This paper presents a new highly parallel algorithm for computing the minimum-norm least-squares solution of inconsistent linear equations Ax = b(A∈Rm×n,b∈R (A)). By this algorithm the solution x = A + b is obtained in T = n(log2m + log2(n - r + 1) + 5) + log2m + 1 steps with P=mn processors when m × 2(n - 1) and with P = 2n(n - 1) processors otherwise.
基金The work of the author has been supported by the Deutache Forschungsgemeinschaft(DFG) under Grant Ho 1846/1-1
文摘This paper studies several problems , which are potentially relevant for the construction of adaptive numerical schemes. First, biorthogonal spline wavelets on [0,1] are chosen as a starting point for characterizations of functions in Besom spaces B(?)(0,1) with 0<σ<∞ and (1+σ)-1<γ<∞. Such function spaces are known to be related to nonlinear approximation. Then so called restricted nonlinear approximation procedures with respect to Sobolev space norms are considered. Besides characterization results Jackson type estimates for various tree-type and tresholding algorithms are investigated. Finally known approximation results for geometry induced singularity functions of boundary integeral equations are combined with the characterization results for restricted nonlinear approximation to show Besov space regularity results.
文摘In this paper, a transportation problem with an objective function as the sum of a linear and fractional function is considered. The linear function represents the total transportation cost incurred when the goods are shipped from various sources to the destinations and the fractional function gives the ratio of sales tax to the total public expenditure. Our objective is to determine the transportation schedule which minimizes the sum of total transportation cost and ratio of total sales tax paid to the total public expenditure. Sometimes, situations arise where either reserve stocks have to be kept at the supply points, for emergencies or there may be extra demand in the markets. In such situations, the total flow needs to be controlled or enhanced. In this paper, a special class of transportation problems is studied where in the total transportation flow is restricted to a known specified level. A related transportation problem is formulated and it is shown that to each basic feasible solution which is called corner feasible solution to related transportation problem, there is a corresponding feasible solution to this restricted flow problem. The optimal solution to restricted flow problem may be obtained from the optimal solution to related transportation problem. An algorithm is presented to solve a capacitated linear plus linear fractional transportation problem with restricted flow. The algorithm is supported by a real life example of a manufacturing company.
文摘Recently,the authors proposed a low-cost approach,named Optimization Approach for Linear Systems(OPALS)for solving any kind of a consistent linear system regarding the structure,characteristics,and dimension of the coefficient matrix A.The results obtained by this approach for matrices with no structure and with indefinite symmetric part were encouraging when compare with other recent and well-known techniques.In this work,we proposed to extend the OPALS approach for solving the Linear Least-Squares Problem(LLSP)and the Minimum Norm Linear System Problem(MNLSP)using any iterative low-cost gradient-type method,avoiding the construction of the matrices AT A or AAT,and taking full advantage of the structure and form of the gradient of the proposed nonlinear objective function in the gradient direction.The combination of those conditions together with the choice of the initial iterate allow us to produce a novel and efficient low-cost numerical scheme for solving both problems.Moreover,the scheme presented in this work can also be used and extended for the weighted minimum norm linear systems and minimum norm linear least-squares problems.We include encouraging numerical results to illustrate the practical behavior of the proposed schemes.
基金Subsidized by The Special Funds For Major State Basic Research Project G1999032803.
文摘Least-squares solution of AXB = D with respect to symmetric positive semidefinite matrix X is considered. By making use of the generalized singular value decomposition, we derive general analytic formulas, and present necessary and sufficient conditions for guaranteeing the existence of the solution. By applying MATLAB 5.2, we give some numerical examples to show the feasibility and accuracy of this construction technique in the finite precision arithmetic.
文摘In this paper,the Hermitian reflexive(Anti-Hermitian reflexive)least-squares so-lutions of matrix equations(AX = B,XC = D)are considered.With special properties of partitioned matrices and Hermitian reflexive(Anti-Hermitian reflexive)matrices,the general expression of the solution is obtained.Moreover,the related optimal approximation problem to a given matrix over the solution set is considered.