This article is a improvement on author's early work (Acta Mathematica Scientia, Vol.30 No.2 Ser.A 2010). In this article, there are two new contributions: 1) The restrictive conditions on approximation domain bo...This article is a improvement on author's early work (Acta Mathematica Scientia, Vol.30 No.2 Ser.A 2010). In this article, there are two new contributions: 1) The restrictive conditions on approximation domain boundary is improved essentially. 2) The Fejer points is extended by perturbed Fejer points with stable order of approximation.展开更多
By the aid of the penalty function method, the equilibrium restriction conditions were introduced to the isoparametric hybrid finite element analysis, and the concrete application course of the penalty function method...By the aid of the penalty function method, the equilibrium restriction conditions were introduced to the isoparametric hybrid finite element analysis, and the concrete application course of the penalty function method in three-dimensional isoparametdc hybrid finite element was discussed. The separated penalty parameters method and the optimal hybrid element model with penalty balance were also presented. The penalty balance method can effectively refrain the parasitical stress on the premise of no additional degrees of freedom. The numeric experiment shows that the presented element not only is effective in improving greatly the numeric calculation precision of distorted grids but also has the universality.展开更多
We study the properties of the Lasso in the high-dimensional partially linear model where the number of variables in the linear part can be greater than the sample size.We use truncated series expansion based on polyn...We study the properties of the Lasso in the high-dimensional partially linear model where the number of variables in the linear part can be greater than the sample size.We use truncated series expansion based on polynomial splines to approximate the nonparametric component in this model.Under a sparsity assumption on the regression coefficients of the linear component and some regularity conditions,we derive the oracle inequalities for the prediction risk and the estimation error.We also provide sufficient conditions under which the Lasso estimator is selection consistent for the variables in the linear part of the model.In addition,we derive the rate of convergence of the estimator of the nonparametric function.We conduct simulation studies to evaluate the finite sample performance of variable selection and nonparametric function estimation.展开更多
基金supported by NSF of Henan Province P. R. China(974050900)
文摘This article is a improvement on author's early work (Acta Mathematica Scientia, Vol.30 No.2 Ser.A 2010). In this article, there are two new contributions: 1) The restrictive conditions on approximation domain boundary is improved essentially. 2) The Fejer points is extended by perturbed Fejer points with stable order of approximation.
文摘By the aid of the penalty function method, the equilibrium restriction conditions were introduced to the isoparametric hybrid finite element analysis, and the concrete application course of the penalty function method in three-dimensional isoparametdc hybrid finite element was discussed. The separated penalty parameters method and the optimal hybrid element model with penalty balance were also presented. The penalty balance method can effectively refrain the parasitical stress on the premise of no additional degrees of freedom. The numeric experiment shows that the presented element not only is effective in improving greatly the numeric calculation precision of distorted grids but also has the universality.
文摘We study the properties of the Lasso in the high-dimensional partially linear model where the number of variables in the linear part can be greater than the sample size.We use truncated series expansion based on polynomial splines to approximate the nonparametric component in this model.Under a sparsity assumption on the regression coefficients of the linear component and some regularity conditions,we derive the oracle inequalities for the prediction risk and the estimation error.We also provide sufficient conditions under which the Lasso estimator is selection consistent for the variables in the linear part of the model.In addition,we derive the rate of convergence of the estimator of the nonparametric function.We conduct simulation studies to evaluate the finite sample performance of variable selection and nonparametric function estimation.