The local well-posedness of the Cauchy problem for the fifth order shallow water equation δtu+αδx^5u+βδx^3u+rδxu+μuδru=0,x,t∈R, is established for low regularity data in Sobolev spaces H^s(s≥-3/8) by ...The local well-posedness of the Cauchy problem for the fifth order shallow water equation δtu+αδx^5u+βδx^3u+rδxu+μuδru=0,x,t∈R, is established for low regularity data in Sobolev spaces H^s(s≥-3/8) by the Fourier restriction norm method. Moreover, the global well-posedness for L^2 data follows from the local well-posedness and the conserved quantity. For data in H^s(s〉0), the global well-posedness is also proved, where the main idea is to use the generalized bilinear estimates associated with the Fourier restriction norm method to prove that the existence time of the solution only depends on the L^2 norm of initial data.展开更多
The Cauchy problem of the generalized Korteweg-de Vries-Benjamin-Ono equation is considered, and low regularity and limit behavior of the solutions are obtained. For k = 1, local well- posedness is obtained for data i...The Cauchy problem of the generalized Korteweg-de Vries-Benjamin-Ono equation is considered, and low regularity and limit behavior of the solutions are obtained. For k = 1, local well- posedness is obtained for data in H^s(R)(s 〉 -3/4). For k = 2, local result for data in H^S(R)(s 〉1/4) is obtained. For k = 3, local result for data in H^S(R)(s 〉 -1/6) is obtained. Moreover, the solutions of generalized Korteweg-de Vries-Benjamin-Ono equation converge to the solutions of KdV equation if the term of Benjamin-Ono equation tends to zero.展开更多
The local well-posedness of the Cauchy problem for the Hirota equation is established for low regularity data in Sobolev spaces Hs(s ≥ -1-4). Moreover, the global well-posedness for L2 data follows from the local wel...The local well-posedness of the Cauchy problem for the Hirota equation is established for low regularity data in Sobolev spaces Hs(s ≥ -1-4). Moreover, the global well-posedness for L2 data follows from the local well-posedness and the conserved quantity. For data in Hs(s > 0), the global well-posedness is also proved. The main idea is to use the generalized trilinear estimates, associated with the Fourier restriction norm method.展开更多
文摘The local well-posedness of the Cauchy problem for the fifth order shallow water equation δtu+αδx^5u+βδx^3u+rδxu+μuδru=0,x,t∈R, is established for low regularity data in Sobolev spaces H^s(s≥-3/8) by the Fourier restriction norm method. Moreover, the global well-posedness for L^2 data follows from the local well-posedness and the conserved quantity. For data in H^s(s〉0), the global well-posedness is also proved, where the main idea is to use the generalized bilinear estimates associated with the Fourier restriction norm method to prove that the existence time of the solution only depends on the L^2 norm of initial data.
文摘The Cauchy problem of the generalized Korteweg-de Vries-Benjamin-Ono equation is considered, and low regularity and limit behavior of the solutions are obtained. For k = 1, local well- posedness is obtained for data in H^s(R)(s 〉 -3/4). For k = 2, local result for data in H^S(R)(s 〉1/4) is obtained. For k = 3, local result for data in H^S(R)(s 〉 -1/6) is obtained. Moreover, the solutions of generalized Korteweg-de Vries-Benjamin-Ono equation converge to the solutions of KdV equation if the term of Benjamin-Ono equation tends to zero.
文摘The local well-posedness of the Cauchy problem for the Hirota equation is established for low regularity data in Sobolev spaces Hs(s ≥ -1-4). Moreover, the global well-posedness for L2 data follows from the local well-posedness and the conserved quantity. For data in Hs(s > 0), the global well-posedness is also proved. The main idea is to use the generalized trilinear estimates, associated with the Fourier restriction norm method.