Background: Although BCG is the most widely administered vaccine in the world, there have never been as many cases of TB as there are now. Globally, more than 8.8 million people developed active TB and 1.4 million—ma...Background: Although BCG is the most widely administered vaccine in the world, there have never been as many cases of TB as there are now. Globally, more than 8.8 million people developed active TB and 1.4 million—many of them—died in 2010. It is estimated that half of pulmonary TB cases arise from latent Mtb infection, making the study of latency and reactivation of utmost importance. Methods: Widely administered BCG vaccines and a gene modified recombinant BCG (rBCG) strain, AERAS-422, were used as models to investigate the growth promoting function of resuscitation-promoting factors (Rpfs) in different bacilli culture phases. Different supernatant fractions were prepared by ultrafiltration, and the promoting function of each fraction containing secreted Rpf(s) was evaluated by growth curve monitoring and colony counting on 7H10 agar plates. Results: The promoting effect of culture supernatants was mainly associated with the high molecular weight fraction (>30 kDa), which stimulated bacterial growth, but did not extend the exponential phase of stimulated culture. Anti-RpfB antibody showed significant growth restriction of the tested cultures. When comparing rBCG cultures containing 7H9 medium, the 10 - 30 kDa fraction, or the >30 kDa fraction, only the >30 kDa fraction was displayed with down-regulation of the secretion of RpfC, D and E. In colony counting tests, the plates containing the >30 kDa fraction had total countable colony numbers 2 to 3 fold higher than the plates with the 10 - 30 kDa fraction, and colonies appeared one to two weeks earlier than on the regular plates. The potential applications of the prepared supernatant fractions containing RpfA and RpfB are discussed, which may include accelerating diagnosis of Mtb infection and future TB vaccine development.展开更多
Resuscitation promoting factor E (RpfE) is one of the five Rpf-like proteins in Mycobacterium tuberculos& (M. tuberculosis). These Rpf-like proteins are secretory, which make them candidates for recognition by th...Resuscitation promoting factor E (RpfE) is one of the five Rpf-like proteins in Mycobacterium tuberculos& (M. tuberculosis). These Rpf-like proteins are secretory, which make them candidates for recognition by the host immune system. In this study, the RpfE gene was amplified from M. tuberculosis, cloned into the expression vectors pDE22 and pPRO EXHT, and were expressed in Mycobacterium vaccae (M. vaccae) and Escherichia coli DHSa, respec- tively. Both recombinant RpfE proteins were purified by Ni-Sepharose affinity chromatography, and were given to C57BL/6 mice. The RpfE proteins elicited T cell proliferation, and stimulated the production of gamma interferon (IFN-y), interleukin-10 (IL-10) and IL-12. Our results indicated that the RpfE protein expressed in M. vaccae could more efficiently stimulate cellular immune response, making it a promising candidate as a subunit vaccine.展开更多
目的:微生物是降解磺胺类抗生素(sulfonamides,SAs)的主要驱动者,但在抗生素胁迫下易处于活的非可培养状态(viable but non-culturable,VBNC)而无法筛选得到;利用藤黄微球菌产生的复苏促进因子(resuscitation-promoting factor,Rpf)改善...目的:微生物是降解磺胺类抗生素(sulfonamides,SAs)的主要驱动者,但在抗生素胁迫下易处于活的非可培养状态(viable but non-culturable,VBNC)而无法筛选得到;利用藤黄微球菌产生的复苏促进因子(resuscitation-promoting factor,Rpf)改善VBNC降解菌群的生长繁殖特性,提高废水的抗生素去除效果。方法:以磺胺二甲嘧啶(sulfamethazine,SMZ)废水为处理对象,利用Rpf蛋白的复苏作用驯化SMZ废水处理系统内活性污泥中潜在的功能降解菌群。结果:当SMZ质量浓度为0.5 mg/L时,投加Rpf蛋白后,SMZ的去除率提高了9.38%;当SMZ质量浓度增加到20 mg/L时,SMZ的去除率提高了17.10%;高通量测序结果表明,Rpf蛋白的投加主要促进了与SMZ降解相关的归属于变形菌门(Proteobacteria)和拟杆菌门(Bacteroidota)的unclassified_f_Comamonadaceae、OLB8、Shinella和Rhodococcus等在系统内的富集,进而提高了SMZ去除效果。结论:首次利用Rpf强化微生物降解SMZ废水,为Rpf应用于其他磺胺类抗生素的去除提供了理论基础。展开更多
在传统水体消毒技术刺激下,细菌会进入活的不可培养(viable but nonculturable,VBNC)状态来提高自身存活率。在撤去外部压力时,未被消毒技术完全去除的VBNC细菌可在水储存和分配期间发生一定程度的复苏,而这些复苏的细菌很可能进入人体...在传统水体消毒技术刺激下,细菌会进入活的不可培养(viable but nonculturable,VBNC)状态来提高自身存活率。在撤去外部压力时,未被消毒技术完全去除的VBNC细菌可在水储存和分配期间发生一定程度的复苏,而这些复苏的细菌很可能进入人体并导致严重疾病。然而,目前仍不清楚水体消毒过程中活的不可培养细菌的形成与复苏机制。该文通过检索了95篇相关文献并结合课题组在抗生素耐药菌方面的消毒控制和细菌休眠方面的研究进行了系统分析。首先,介绍了在不同水消毒技术下VBNC细菌的形成并阐述了其潜在的形成机制,其主要包括了严谨反应、能量代谢、一般应激反应系统和毒素-抗毒素系统。其次,介绍了VBNC致病菌复苏的风险和总结了13种复苏方法。该文还综述了自然复苏、复苏促进因子(Rpf)与自诱导剂复苏等3种复苏机制的不同。在修复了细胞损伤并恢复氧化还原平衡和代谢活性之后,VBNC细菌才能发生自然复苏。Rpf能够帮助VBNC细菌重塑细胞壁,这有助于VBNC细菌恢复可培养能力。自诱导剂-2能够促进微生物种群中的细胞间通讯并增加katG的表达来降低过氧化氢毒性,从而促进VBNC细菌的复苏。最后,对今后的研究方向进行了展望,介绍了微流控技术、稳定同位素示踪代谢活性分析方法、单细胞重水标记拉曼光谱方法和荧光能量共振转移技术等可以用于研究VBNC细菌复苏机制的前沿技术。该综述能为回答“多大剂量的消毒技术能够灭活VBNC细菌并避免其复苏”和“复苏的VBNC细菌生理特性是否都恢复到正常水平”等问题提供参考,为水处理过程中微生物安全性评估和制定更有效的消毒策略提供理论依据。展开更多
文摘Background: Although BCG is the most widely administered vaccine in the world, there have never been as many cases of TB as there are now. Globally, more than 8.8 million people developed active TB and 1.4 million—many of them—died in 2010. It is estimated that half of pulmonary TB cases arise from latent Mtb infection, making the study of latency and reactivation of utmost importance. Methods: Widely administered BCG vaccines and a gene modified recombinant BCG (rBCG) strain, AERAS-422, were used as models to investigate the growth promoting function of resuscitation-promoting factors (Rpfs) in different bacilli culture phases. Different supernatant fractions were prepared by ultrafiltration, and the promoting function of each fraction containing secreted Rpf(s) was evaluated by growth curve monitoring and colony counting on 7H10 agar plates. Results: The promoting effect of culture supernatants was mainly associated with the high molecular weight fraction (>30 kDa), which stimulated bacterial growth, but did not extend the exponential phase of stimulated culture. Anti-RpfB antibody showed significant growth restriction of the tested cultures. When comparing rBCG cultures containing 7H9 medium, the 10 - 30 kDa fraction, or the >30 kDa fraction, only the >30 kDa fraction was displayed with down-regulation of the secretion of RpfC, D and E. In colony counting tests, the plates containing the >30 kDa fraction had total countable colony numbers 2 to 3 fold higher than the plates with the 10 - 30 kDa fraction, and colonies appeared one to two weeks earlier than on the regular plates. The potential applications of the prepared supernatant fractions containing RpfA and RpfB are discussed, which may include accelerating diagnosis of Mtb infection and future TB vaccine development.
基金supported by National Natural Science Foundation of China (No.30470097,No.30500432)
文摘Resuscitation promoting factor E (RpfE) is one of the five Rpf-like proteins in Mycobacterium tuberculos& (M. tuberculosis). These Rpf-like proteins are secretory, which make them candidates for recognition by the host immune system. In this study, the RpfE gene was amplified from M. tuberculosis, cloned into the expression vectors pDE22 and pPRO EXHT, and were expressed in Mycobacterium vaccae (M. vaccae) and Escherichia coli DHSa, respec- tively. Both recombinant RpfE proteins were purified by Ni-Sepharose affinity chromatography, and were given to C57BL/6 mice. The RpfE proteins elicited T cell proliferation, and stimulated the production of gamma interferon (IFN-y), interleukin-10 (IL-10) and IL-12. Our results indicated that the RpfE protein expressed in M. vaccae could more efficiently stimulate cellular immune response, making it a promising candidate as a subunit vaccine.
文摘在传统水体消毒技术刺激下,细菌会进入活的不可培养(viable but nonculturable,VBNC)状态来提高自身存活率。在撤去外部压力时,未被消毒技术完全去除的VBNC细菌可在水储存和分配期间发生一定程度的复苏,而这些复苏的细菌很可能进入人体并导致严重疾病。然而,目前仍不清楚水体消毒过程中活的不可培养细菌的形成与复苏机制。该文通过检索了95篇相关文献并结合课题组在抗生素耐药菌方面的消毒控制和细菌休眠方面的研究进行了系统分析。首先,介绍了在不同水消毒技术下VBNC细菌的形成并阐述了其潜在的形成机制,其主要包括了严谨反应、能量代谢、一般应激反应系统和毒素-抗毒素系统。其次,介绍了VBNC致病菌复苏的风险和总结了13种复苏方法。该文还综述了自然复苏、复苏促进因子(Rpf)与自诱导剂复苏等3种复苏机制的不同。在修复了细胞损伤并恢复氧化还原平衡和代谢活性之后,VBNC细菌才能发生自然复苏。Rpf能够帮助VBNC细菌重塑细胞壁,这有助于VBNC细菌恢复可培养能力。自诱导剂-2能够促进微生物种群中的细胞间通讯并增加katG的表达来降低过氧化氢毒性,从而促进VBNC细菌的复苏。最后,对今后的研究方向进行了展望,介绍了微流控技术、稳定同位素示踪代谢活性分析方法、单细胞重水标记拉曼光谱方法和荧光能量共振转移技术等可以用于研究VBNC细菌复苏机制的前沿技术。该综述能为回答“多大剂量的消毒技术能够灭活VBNC细菌并避免其复苏”和“复苏的VBNC细菌生理特性是否都恢复到正常水平”等问题提供参考,为水处理过程中微生物安全性评估和制定更有效的消毒策略提供理论依据。