期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of surface retaining elements on rock stability:laboratory investigation with sand powder 3D printing
1
作者 Hao Feng Lishuai Jiang +3 位作者 Qingwei Wang Peng Tang Atsushi Sainoki Hani S.Mitri 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期305-324,共20页
This study aims to investigate the benefcial efects of surface retaining elements (SREs) on the mechanical behaviors of bolted rock and roadway stability. 3D printing (3DP) technology is utilized to create rock analog... This study aims to investigate the benefcial efects of surface retaining elements (SREs) on the mechanical behaviors of bolted rock and roadway stability. 3D printing (3DP) technology is utilized to create rock analogue prismatic specimens for conducting this investigation. Uniaxial compression tests with acoustic emission (AE) and digital image correlation techniques have been conducted on 3DP specimens bolted with diferent SREs. The results demonstrate that the strength and modulus of elasticity of the bolted specimens show a positive correlation with the area of the SRE;the AE characteristics of the bolted specimens are higher than those of the unbolted specimen, but they decrease with an increase in SRE area, thus further improving the integrity of the bolted specimens. The reinforcement efect of SREs on the surrounding rock of roadways is further analyzed using numerical modelling and feld test. The results provide a better understanding of the role of SREs in rock bolting and the optimization of rock bolting design. Furthermore, they verify the feasibility of 3DP for rock analogues in rock mechanics tests. 展开更多
关键词 Roadway stability Surface retaining element Sand-powder 3D printing Rock bolting Numerical modelling
下载PDF
Cu Partitioning Behavior and Its Effect on Microstructure and Mechanical Properties of 0.12C-1.33Mn-0.55Cu Q&P Steel 被引量:6
2
作者 陈连生 HU Baojia +4 位作者 XU Jinghui 田亚强 ZHENG Xiaoping SONG Jinying XU Yong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第5期1179-1185,共7页
Cu, as an austenitic stable element, is added to steel in order to suppress the adverse effects of high content of C and Mn on welding. Based on C partitioning, Cu and Mn partitioning can further improve the stability... Cu, as an austenitic stable element, is added to steel in order to suppress the adverse effects of high content of C and Mn on welding. Based on C partitioning, Cu and Mn partitioning can further improve the stability of retained austenite in the intercritical annealing process. A sample of low carbon steel containing Cu was treated by the intercritical annealing, then quenching process(I&Q). Subsequently, another sample was treated by the intercritical annealing, subsequent austenitizing, then quenching and partitioning process(I&Q&P). The effects of element partitioning behavior in intercritical region on the microstructure and mechanical properties of the steel were studied. The results showed that after the I&Q process ferrite and martensite could be obtained, with C, Cu and Mn enriched in the martensite. When intercritically heated at 800 ℃, Cu and Mn were partitioned from ferrite to austenite, which was enhanced gradually as the heating time was increased. This partitioning effect was the most obvious when the sample was heated at 800 ℃ for 40 min. At the early stage of α→γ transformation, the formation of γ was controlled by the partitioning of carbon, while at the later stage, it was mainly affected by the partitioning of Cu and Mn. After the I&Q&P process, the partitioning effect of Cu and Mn element could be retained. C was assembled in retained austenite during the quenching and partitioning process. The strength and elongation of I&Q&P steel was increased by 5 305 MPa% compared with that subjected to Q&P process. The volume fraction of retained autensite was increased from 8.5% to 11.2%. Hence, the content of retained austenite could be improved significantly by Mn and Cu partitioning, which increased the elongation of steel. 展开更多
关键词 low carbon high strength steel intercritical annealing element partitioning behavior retained austenite mechanical properties
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部