Thermal shock behaviour was investigated for two morphologically different composites comprising an alumina matrix and 20 vol. pct Fe particles for a wide range of quenching temperature differences (AT=100~800癈) and ...Thermal shock behaviour was investigated for two morphologically different composites comprising an alumina matrix and 20 vol. pct Fe particles for a wide range of quenching temperature differences (AT=100~800癈) and compared to a monolithic alumina. The retained strength and critical quenching temperature difference, Tcr of the two composites were a significant improvement over the values for the respective monolithic alumina. Crack lengths and densities were shown to be greater for the alumina than for the two composites at all quenching temperature differences. The thermal shock resistance parameters for monolithic alumina and the two composites were calculated according to their mechanical and physical properties. The calculated results agree well with the experimental one and indicate possible explanations for the differences in thermal shock behaviour.展开更多
Cu, as an austenitic stable element, is added to steel in order to suppress the adverse effects of high content of C and Mn on welding. Based on C partitioning, Cu and Mn partitioning can further improve the stability...Cu, as an austenitic stable element, is added to steel in order to suppress the adverse effects of high content of C and Mn on welding. Based on C partitioning, Cu and Mn partitioning can further improve the stability of retained austenite in the intercritical annealing process. A sample of low carbon steel containing Cu was treated by the intercritical annealing, then quenching process(I&Q). Subsequently, another sample was treated by the intercritical annealing, subsequent austenitizing, then quenching and partitioning process(I&Q&P). The effects of element partitioning behavior in intercritical region on the microstructure and mechanical properties of the steel were studied. The results showed that after the I&Q process ferrite and martensite could be obtained, with C, Cu and Mn enriched in the martensite. When intercritically heated at 800 ℃, Cu and Mn were partitioned from ferrite to austenite, which was enhanced gradually as the heating time was increased. This partitioning effect was the most obvious when the sample was heated at 800 ℃ for 40 min. At the early stage of α→γ transformation, the formation of γ was controlled by the partitioning of carbon, while at the later stage, it was mainly affected by the partitioning of Cu and Mn. After the I&Q&P process, the partitioning effect of Cu and Mn element could be retained. C was assembled in retained austenite during the quenching and partitioning process. The strength and elongation of I&Q&P steel was increased by 5 305 MPa% compared with that subjected to Q&P process. The volume fraction of retained autensite was increased from 8.5% to 11.2%. Hence, the content of retained austenite could be improved significantly by Mn and Cu partitioning, which increased the elongation of steel.展开更多
The Fe-0.21C 2.2Mn 0.49Si-1.77A1 transformation induced plasticity (TRIP) aided steel was heat trea- ted at various austenitizing temperatures under both TRiP-aided polygonal ferrite type (TPF) and an- nealed mart...The Fe-0.21C 2.2Mn 0.49Si-1.77A1 transformation induced plasticity (TRIP) aided steel was heat trea- ted at various austenitizing temperatures under both TRiP-aided polygonal ferrite type (TPF) and an- nealed martensite matrix (TAM) processes. The microstructure evolution and their effects on mechanical properties were systematically investigated through the microstructure observation and dilatometric analysis. The microstructure homogeneity is improved in TPF steel heated at a high temperature due to the reduced banded martensite and the increased bainite. Compared with the mechanical properties of the TPF steels, the yield strength and elongation of the TAM steels are much higher, while the tensile strength is lower than that of TPF steels. The stability of intercritical austenite is affected by the heating tempera- ture, and thus the following phase transformation influences the mechanical properties, such as the bain- ite transformation and the precipitation of polygonal ferrite. Obvious dynamic bainite transformation occurs at TAM850, TAM900 and TAM950, More proportion of polygonal ferrite is found in the sample heated at 950 ℃. The bainite transformation beginning at a higher temperature results in the wider bainitic ferrite laths. The more proportion of polygonal ferrite and wide bainitic ferrite laths commonly contribute to the lower strength and better elongation. The uniform microstructure with lath-like morphology and retained austenite with high average carbon content ensures a good mechanical property in TAM850 with the product of strength and elongation of about 28 GPa ·%,展开更多
基金This work was supported by the Trans-Century Training Pro-gram Foundation for the Talents by the Ministry of Education of China, the National Natural Science Foundation of China (No. 50172010), the Natural Science Foundation of Liaoning Province (No. 200
文摘Thermal shock behaviour was investigated for two morphologically different composites comprising an alumina matrix and 20 vol. pct Fe particles for a wide range of quenching temperature differences (AT=100~800癈) and compared to a monolithic alumina. The retained strength and critical quenching temperature difference, Tcr of the two composites were a significant improvement over the values for the respective monolithic alumina. Crack lengths and densities were shown to be greater for the alumina than for the two composites at all quenching temperature differences. The thermal shock resistance parameters for monolithic alumina and the two composites were calculated according to their mechanical and physical properties. The calculated results agree well with the experimental one and indicate possible explanations for the differences in thermal shock behaviour.
基金Funded by National Natural Science Foundation of China(Nos.51574107,51304186)Natural Science Foundation of Hebei Province(Nos.E2016209048,E2017209048)Tangshan High Performance Metal and Composite Materials Science and Technical Innovation Team(No.15130202C)
文摘Cu, as an austenitic stable element, is added to steel in order to suppress the adverse effects of high content of C and Mn on welding. Based on C partitioning, Cu and Mn partitioning can further improve the stability of retained austenite in the intercritical annealing process. A sample of low carbon steel containing Cu was treated by the intercritical annealing, then quenching process(I&Q). Subsequently, another sample was treated by the intercritical annealing, subsequent austenitizing, then quenching and partitioning process(I&Q&P). The effects of element partitioning behavior in intercritical region on the microstructure and mechanical properties of the steel were studied. The results showed that after the I&Q process ferrite and martensite could be obtained, with C, Cu and Mn enriched in the martensite. When intercritically heated at 800 ℃, Cu and Mn were partitioned from ferrite to austenite, which was enhanced gradually as the heating time was increased. This partitioning effect was the most obvious when the sample was heated at 800 ℃ for 40 min. At the early stage of α→γ transformation, the formation of γ was controlled by the partitioning of carbon, while at the later stage, it was mainly affected by the partitioning of Cu and Mn. After the I&Q&P process, the partitioning effect of Cu and Mn element could be retained. C was assembled in retained austenite during the quenching and partitioning process. The strength and elongation of I&Q&P steel was increased by 5 305 MPa% compared with that subjected to Q&P process. The volume fraction of retained autensite was increased from 8.5% to 11.2%. Hence, the content of retained austenite could be improved significantly by Mn and Cu partitioning, which increased the elongation of steel.
基金funded by National Natural Science Foundation of China(51574028)
文摘The Fe-0.21C 2.2Mn 0.49Si-1.77A1 transformation induced plasticity (TRIP) aided steel was heat trea- ted at various austenitizing temperatures under both TRiP-aided polygonal ferrite type (TPF) and an- nealed martensite matrix (TAM) processes. The microstructure evolution and their effects on mechanical properties were systematically investigated through the microstructure observation and dilatometric analysis. The microstructure homogeneity is improved in TPF steel heated at a high temperature due to the reduced banded martensite and the increased bainite. Compared with the mechanical properties of the TPF steels, the yield strength and elongation of the TAM steels are much higher, while the tensile strength is lower than that of TPF steels. The stability of intercritical austenite is affected by the heating tempera- ture, and thus the following phase transformation influences the mechanical properties, such as the bain- ite transformation and the precipitation of polygonal ferrite. Obvious dynamic bainite transformation occurs at TAM850, TAM900 and TAM950, More proportion of polygonal ferrite is found in the sample heated at 950 ℃. The bainite transformation beginning at a higher temperature results in the wider bainitic ferrite laths. The more proportion of polygonal ferrite and wide bainitic ferrite laths commonly contribute to the lower strength and better elongation. The uniform microstructure with lath-like morphology and retained austenite with high average carbon content ensures a good mechanical property in TAM850 with the product of strength and elongation of about 28 GPa ·%,