Soil water retention characteristics are the key information required in hydrological modeling. Frac-tal models provide a practical alternative for indirectly estimating soil water retention characteristics frompartic...Soil water retention characteristics are the key information required in hydrological modeling. Frac-tal models provide a practical alternative for indirectly estimating soil water retention characteristics fromparticle-size distribution data. Predictive capabilities of three fractal models, i.e, Tyler-Wheatcraft model,Rieu-Sposito model, and Brooks-Corey model, were fully evaluated in this work using experimental datafrom an international database and literature. Particle-size distribution data were firstly interpolated into20 classes using a van Genuchten-type equation. Fractal dimensions of the tortuous pore wall and the poresurface were then calculated from the detailed particle-size distribution and incorporated as a parameter infractal water retention models. Comparisons between measured and model-estimated water retention cha-racteristics indicated that these three models were applicable to relatively different soil textures and pressurehead ranges. Tyler-Wheatcraft and Brooks-Corey models led to reasonable agreements for both coarse- andmedium-textured soils, while the latter showed applicability to a broader texture range. In contrast, Rieu-Sposito model was more suitable for fine-textured soils. Fractal models produced a better estimation of watercontents at low pressure heads than at high pressure heads.展开更多
The deformation characteristics of silty soils under vibrational loads can easily change due to the wetting process,leading to the failure of roadbed structures.Commonly used methods for improving silty soils in engin...The deformation characteristics of silty soils under vibrational loads can easily change due to the wetting process,leading to the failure of roadbed structures.Commonly used methods for improving silty soils in engineering often yield unsatisfactory economic and ecological outcomes.As an environment-friendly soil improvement material,Xanthan gum has broad application prospects and is therefore considered a solidifying agent for enhancing silty soil properties in the Yellow River Basin.In this study,a series of tests is conducted using a scanning electron microscope and a dynamic triaxial testing apparatus to investigate the microstructure and dynamic deformation characteristics of unsaturated silty soil with varying xanthan gum contents during the wetting process.The results show that xanthan gum effectively fills voids between soil particles and adheres to their surfaces,forming fibrous and network structures.This modification enhances the inherent properties of the silty soil and significantly improves its stability under dynamic loading.Specifically,with increasing xanthan gum content,the dynamic shear modulus increases while the damping ratio decreases.During the wetting process,as suction decreases,the dynamic shear modulus decreases while the damping ratio increases.Xanthan gum reduces the sensitivity of the dynamic deformation characteristics of the treated silty soil to changes in suction levels.Finally,based on the modified Hardin-Drnevich hyperbolic model,a predictive model for the dynamic shear modulus and damping ratio of treated silty soil is proposed,considering the xanthan gum content.These research findings provide a theoretical basis for the construction and maintenance of water conservancy,slope stabilization,and roadbed projects in the Yellow River Basin.展开更多
The accumulation process of trapped charges in a TANOS cell during P/E cycling is investigated via numerical simulation. The recombination process between trapped charges is an important issue on the retention of char...The accumulation process of trapped charges in a TANOS cell during P/E cycling is investigated via numerical simulation. The recombination process between trapped charges is an important issue on the retention of charge trapping memory. Our results show that accumulated trapped holes during P/E cycling can have an influence on retention, and the recombination mechanism between trapped charges should be taken into account when evaluating the retention capability of TANOS.展开更多
It is widely accepted that urban plant leaves can capture airborne particles. Previous studies on the particle capture capacity of plant leaves have mostly focused on particle mass and/or size distribution. Fewer stud...It is widely accepted that urban plant leaves can capture airborne particles. Previous studies on the particle capture capacity of plant leaves have mostly focused on particle mass and/or size distribution. Fewer studies, however, have examined the particle density, and the size and shape characteristics of particles, which may have important implications for evaluating the particle capture efficiency of plants, and identifying the particle sources. In addition, the role of different vegetation types is as yet unclear. Here, we chose three species of different vegetation types, and firstly applied an object-based classification approach to automatically identify the particles from scanning electron microscope(SEM)micrographs. We then quantified the particle capture efficiency, and the major sources of particles were identified. We found(1) Rosa xanthina Lindl(shrub species) had greater retention efficiency than Broussonetia papyrifera(broadleaf species) and Pinus bungeana Zucc.(coniferous species), in terms of particle number and particle area cover.(2) 97.9% of the identified particles had diameter ≤10 μm, and 67.1% of them had diameter ≤2.5 μm. 89.8% of the particles had smooth boundaries, with 23.4% of them being nearly spherical.(3) 32.4%–74.1% of the particles were generated from bare soil and construction activities, and 15.5%–23.0% were mainly from vehicle exhaust and cooking fumes.展开更多
基金Project supported by the National Natural Science Foundation of China (No, 49971041), the National Key Basic Research Support Foundation (NKBRSF) of China (No. G1999011803) the Director Foundation of the Institute of Soil Science, CAS (No. ISSDF0004).
文摘Soil water retention characteristics are the key information required in hydrological modeling. Frac-tal models provide a practical alternative for indirectly estimating soil water retention characteristics fromparticle-size distribution data. Predictive capabilities of three fractal models, i.e, Tyler-Wheatcraft model,Rieu-Sposito model, and Brooks-Corey model, were fully evaluated in this work using experimental datafrom an international database and literature. Particle-size distribution data were firstly interpolated into20 classes using a van Genuchten-type equation. Fractal dimensions of the tortuous pore wall and the poresurface were then calculated from the detailed particle-size distribution and incorporated as a parameter infractal water retention models. Comparisons between measured and model-estimated water retention cha-racteristics indicated that these three models were applicable to relatively different soil textures and pressurehead ranges. Tyler-Wheatcraft and Brooks-Corey models led to reasonable agreements for both coarse- andmedium-textured soils, while the latter showed applicability to a broader texture range. In contrast, Rieu-Sposito model was more suitable for fine-textured soils. Fractal models produced a better estimation of watercontents at low pressure heads than at high pressure heads.
基金supported by the Postgraduate Education Reform and Quality Improvement Project of Henan Province,China(Grant No.YJS2023AL004)the Graduate Innovation Project of North China University of Water Resources and Electric Power(Grant No.NCWUYC-202315069)the China National Scholarship Fund organized by the China Scholarship Council(Grant No.202208410337).
文摘The deformation characteristics of silty soils under vibrational loads can easily change due to the wetting process,leading to the failure of roadbed structures.Commonly used methods for improving silty soils in engineering often yield unsatisfactory economic and ecological outcomes.As an environment-friendly soil improvement material,Xanthan gum has broad application prospects and is therefore considered a solidifying agent for enhancing silty soil properties in the Yellow River Basin.In this study,a series of tests is conducted using a scanning electron microscope and a dynamic triaxial testing apparatus to investigate the microstructure and dynamic deformation characteristics of unsaturated silty soil with varying xanthan gum contents during the wetting process.The results show that xanthan gum effectively fills voids between soil particles and adheres to their surfaces,forming fibrous and network structures.This modification enhances the inherent properties of the silty soil and significantly improves its stability under dynamic loading.Specifically,with increasing xanthan gum content,the dynamic shear modulus increases while the damping ratio decreases.During the wetting process,as suction decreases,the dynamic shear modulus decreases while the damping ratio increases.Xanthan gum reduces the sensitivity of the dynamic deformation characteristics of the treated silty soil to changes in suction levels.Finally,based on the modified Hardin-Drnevich hyperbolic model,a predictive model for the dynamic shear modulus and damping ratio of treated silty soil is proposed,considering the xanthan gum content.These research findings provide a theoretical basis for the construction and maintenance of water conservancy,slope stabilization,and roadbed projects in the Yellow River Basin.
基金Project supported by Samsung Electronics Co.Ltd.(Nos.20060001050,2006CB302705)
文摘The accumulation process of trapped charges in a TANOS cell during P/E cycling is investigated via numerical simulation. The recombination process between trapped charges is an important issue on the retention of charge trapping memory. Our results show that accumulated trapped holes during P/E cycling can have an influence on retention, and the recombination mechanism between trapped charges should be taken into account when evaluating the retention capability of TANOS.
基金supported by the “One-Hundred Talents” program of the Chinese Academy of Sciences (No. N234)the National Natural Science Foundation of China(Nos. 41430638 and 41301199)the project “Major Special Project-The China High-Resolution Earth Observation System”
文摘It is widely accepted that urban plant leaves can capture airborne particles. Previous studies on the particle capture capacity of plant leaves have mostly focused on particle mass and/or size distribution. Fewer studies, however, have examined the particle density, and the size and shape characteristics of particles, which may have important implications for evaluating the particle capture efficiency of plants, and identifying the particle sources. In addition, the role of different vegetation types is as yet unclear. Here, we chose three species of different vegetation types, and firstly applied an object-based classification approach to automatically identify the particles from scanning electron microscope(SEM)micrographs. We then quantified the particle capture efficiency, and the major sources of particles were identified. We found(1) Rosa xanthina Lindl(shrub species) had greater retention efficiency than Broussonetia papyrifera(broadleaf species) and Pinus bungeana Zucc.(coniferous species), in terms of particle number and particle area cover.(2) 97.9% of the identified particles had diameter ≤10 μm, and 67.1% of them had diameter ≤2.5 μm. 89.8% of the particles had smooth boundaries, with 23.4% of them being nearly spherical.(3) 32.4%–74.1% of the particles were generated from bare soil and construction activities, and 15.5%–23.0% were mainly from vehicle exhaust and cooking fumes.