Taurine is considered a non-essential amino acid because it is synthesized by most mammals.However,dietary intake of taurine may be necessary to achieve the physiological levels required for the development,maintenanc...Taurine is considered a non-essential amino acid because it is synthesized by most mammals.However,dietary intake of taurine may be necessary to achieve the physiological levels required for the development,maintenance,and function of certain tissues.Taurine may be especially important for the retina.The concentration of taurine in the retina is higher than that in any other tissue in the body and taurine deficiency causes retinal oxidative stress,apoptosis,and degeneration of photoreceptors and retinal ganglion cells.Low plasma taurine levels may also underlie retinal degeneration in humans and therefore,taurine administration could exert retinal neuroprotective effects.Taurine has antioxidant,anti-apoptotic,immunomodulatory,and calcium homeostasis-regulatory properties.This review summarizes the role of taurine in retinal health and disease,where it appears that taurine may be a promising nutraceutical.展开更多
The retina of zebrafish can regenerate completely after injury.M ultiple studies have demonstrated that metabolic alte rations occur during retinal damage;however to date no study has identified a link between metabol...The retina of zebrafish can regenerate completely after injury.M ultiple studies have demonstrated that metabolic alte rations occur during retinal damage;however to date no study has identified a link between metabolites and retinal regeneration of zebrafish.Here,we performed an unbiased metabolome sequencing in the N-methyl-D-aspartic acid-damaged retinas of zebrafish to demonstrate the metabolomic mechanism of retinal regeneration.Among the differentially-ex pressed metabolites,we found a significant decrease in p-aminobenzoic acid in the N-methyl-D-aspartic acid-damaged retinas of zebrafish.Then,we investigated the role of p-aminobenzoic acid in retinal regeneration in adult zebrafish.Impo rtantly,p-aminobenzoic acid activated Achaetescute complex-like 1a expression,thereby promoting Müller glia reprogramming and division,as well as Müller glia-derived progenitor cell proliferation.Finally,we eliminated folic acid and inflammation as downstream effectors of PABA and demonstrated that PABA had little effect on Müller glia distribution.Taken together,these findings show that PABA contributes to retinal regeneration through activation of Achaetescute complex-like 1a expression in the N-methyl-Daspartic acid-damaged retinas of zebrafish.展开更多
Research Background and Purpose: The number of diabetic patients is rapidly increasing, making it crucial to find methods to prevent diabetic retinopathy (DR), a leading cause of blindness. We investigated the effects...Research Background and Purpose: The number of diabetic patients is rapidly increasing, making it crucial to find methods to prevent diabetic retinopathy (DR), a leading cause of blindness. We investigated the effects of prophylactic pattern scanning laser retinal photocoagulation on DR development in Spontaneously Diabetic Torii (SDT) fatty rats as a new prevention approach. Methods: Photocoagulation was applied to the right eyes of 8-week-old Spontaneously Diabetic Torii (SDT) fatty rats, with the left eyes serving as untreated controls. Electroretinography at 9 and 39 weeks of age and pathological examinations, including immunohistochemistry for vascular endothelial growth factor and glial fibrillary acidic protein at 24 and 40 weeks of age, were performed on both eyes. Results: There were no significant differences in amplitude and prolongation of the OP waves between the right and left eyes in SDT fatty rats at 39 weeks of age. Similarly, no significant differences in pathology and immunohistochemistry were observed between the right and left eyes in SDT fatty rats at 24 and 40 weeks of age. Conclusion: Prophylactic pattern scanning retinal laser photocoagulation did not affect the development of diabetic retinopathy in SDT fatty rats.展开更多
AIM:To examine the disparities in macular retinal vascular density between individuals with connective tissue disease-related interstitial lung disease(CTD-ILD)and healthy controls(HCs)by optical coherence tomography ...AIM:To examine the disparities in macular retinal vascular density between individuals with connective tissue disease-related interstitial lung disease(CTD-ILD)and healthy controls(HCs)by optical coherence tomography angiography(OCTA)and to investigate the changes in microvascular density in abnormal eyes.METHODS:For a retrospective case-control study,a total of 16 patients(32 eyes)diagnosed with CTD-ILD were selected as the ILD group.The 16 healthy volunteers with 32 eyes,matched in terms of age and sex with the patients,were recruited as control group.The macular retina’s superficial retinal layer(SRL)and deep retinal layer(DRL)were examined and scanned using OCTA in each individual eye.The densities of retinal microvascular(MIR),macrovascular(MAR),and total microvascular(TMI)were calculated and compared.Changes in retinal vascular density in the macular region were analyzed using three different segmentation methods:central annuli segmentation method(C1-C6),hemispheric segmentation method[uperior right(SR),superior left(SL),inferior left(IL),and inferior right(IR)],and Early Treatment Diabetic Retinopathy Study(ETDRS)methods[superior(S),inferior(I),left(L),and right(R)].The data were analyzed using Version 9.0 of GraphPad prism and Pearson analysis.RESULTS:The OCTA data demonstrated a statistically significant difference(P<0.05)in macular retinal microvessel density between the two groups.Specifically,in the SRL and DRL analyses,the ILD group exhibited significantly lower surface density of MIR and TMI compared to the HCs group(P<0.05).Furthermore,using the hemispheric segmentation method,the ILD group showed notable reductions in SL,SR,and IL in the superficial retina(P<0.05),as well as marked decreases in SL and IR in the deep retina(P<0.05).Similarly,when employing the ETDRS method,the ILD group displayed substantial drops in superficial retinal S and I(P<0.05),along with notable reductions in deep retinal L,I,and R(P<0.05).In the central annuli segmentation method,the ILD group exhibited a significant decrease in the superficial retinal C2-4 region(P<0.05),whereas the deep retina showed a notable reduction in the C3-5 region(P<0.05).Additionally,there was an observed higher positive likelihood ratio in the superficial SR region and deep MIR.Furthermore,there was a negative correlation between conjunctival vascular density and both deep and superficial retinal TMI(P<0.001).CONCLUSION:Patients with CTD-ILD exhibits a significantly higher conjunctival vascular density compared to the HCs group.Conversely,their fundus retinal microvascular density is significantly lower.Furthermore,CTD-ILD patients display notably lower superficial and deep retinal vascular density in comparison to the HCs group.The inverse correlation between conjunctival vascular density and both superficial and deep retinal TMI suggests that detecting subtle changes in ocular microcirculation could potentially serve as an early diagnostic indicator for connective tissue diseases,thereby enhancing disease management.展开更多
The organotypic retinal explant culture has been established for more than a decade and offers a range of unique advantages compared with in vivo experiments and cell cultures.However,the lack of systematic and contin...The organotypic retinal explant culture has been established for more than a decade and offers a range of unique advantages compared with in vivo experiments and cell cultures.However,the lack of systematic and continuous comparison between in vivo retinal development and the organotypic retinal explant culture makes this model controversial in postnatal retinal development studies.Thus,we aimed to verify the feasibility of using this model for postnatal retinal development studies by comparing it with the in vivo retina.In this study,we showed that postnatal retinal explants undergo normal development,and exhibit a consistent structure and timeline with retinas in vivo.Initially,we used SOX2 and PAX6 immunostaining to identify retinal progenitor cells.We then examined cell proliferation and migration by immunostaining with Ki-67 and doublecortin,respectively.Ki-67-and doublecortin-positive cells decreased in both in vivo and explants during postnatal retinogenesis,and exhibited a high degree of similarity in abundance and distribution between groups.Additionally,we used Ceh-10 homeodomain-containing homolog,glutamate-ammonia ligase(glutamine synthetase),neuronal nuclei,and ionized calcium-binding adapter molecule 1 immunostaining to examine the emergence of bipolar cells,Müller glia,mature neurons,and microglia,respectively.The timing and spatial patterns of the emergence of these cell types were remarkably consistent between in vivo and explant retinas.Our study showed that the organotypic retinal explant culture model had a high degree of consistency with the progression of in vivo early postnatal retina development.The findings confirm the accuracy and credibility of this model and support its use for long-term,systematic,and continuous observation.展开更多
AIM:To investigate the stability of the seven housekeeping genes:beta-actin(ActB),glyceraldehyde-3-phosphate dehydrogenase(GAPDH),18s ribosomal unit 5(18s),cyclophilin A(CycA),hypoxanthine-guanine phosphoribosyl trans...AIM:To investigate the stability of the seven housekeeping genes:beta-actin(ActB),glyceraldehyde-3-phosphate dehydrogenase(GAPDH),18s ribosomal unit 5(18s),cyclophilin A(CycA),hypoxanthine-guanine phosphoribosyl transferase(HPRT),ribosomal protein large P0(36B4)and terminal uridylyl transferase 1(U6)in the diabetic retinal tissue of rat model.METHODS:The expression of these seven genes in rat retinal tissues was determined using real-time quantitative reverse transcription polymerase chain reaction(RT-qPCR)in two groups;normal control rats and streptozotocininduced diabetic rats.The stability analysis of gene expression was investigated using geNorm,NormFinder,BestKeeper,and comparative delta-Ct(ΔCt)algorithms.RESULTS:The 36B4 gene was stably expressed in the retinal tissues of normal control animals;however,it was less stable in diabetic retinas.The 18s gene was expressed consistently in both normal control and diabetic rats’retinal tissue.That this gene was the best reference for data normalisation in RT-qPCR studies that used the retinal tissue of streptozotocin-induced diabetic rats.Furthermore,there was no ideal gene stably expressed for use in all experimental settings.CONCLUSION:Identifying relevant genes is a need for achieving RT-qPCR validity and reliability and must be appropriately achieved based on a specific experimental setting.展开更多
AIM:To observe the effects of N-acetylserotonin(NAS)administration on retinal ischemia-reperfusion(RIR)injury in rats and explore the underlying mechanisms involving the high mobility group box 1(HMGB1)/receptor for a...AIM:To observe the effects of N-acetylserotonin(NAS)administration on retinal ischemia-reperfusion(RIR)injury in rats and explore the underlying mechanisms involving the high mobility group box 1(HMGB1)/receptor for advanced glycation end-products(RAGE)/nuclear factor-kappa B(NF-κB)signaling pathway.METHODS:A rat model of RIR was developed by increasing the pressure of the anterior chamber of the eye.Eighty male Sprague Dawley were randomly divided into five groups:sham group(n=8),RIR group(n=28),RIR+NAS group(n=28),RIR+FPS-ZM1 group(n=8)and RIR+NAS+FPS-ZM1 group(n=8).The therapeutic effects of NAS were examined by hematoxylin-eosin(H&E)staining,and retinal ganglion cells(RGCs)counting.The expression of interleukin 1 beta(IL-1β),HMGB1,RAGE,and nod-like receptor 3(NLRP3)proteins and the phosphorylation of nuclear factorkappa B(p-NF-κB)were analyzed by immunohistochemistry staining and Western blot analysis.The expression of HMGB1 protein was also detected by enzyme-linked immunosorbent assay(ELISA).RESULTS:H&E staining results showed that NAS significantly reduced retinal edema and increased the number of RGCs in RIR rats.With NAS therapy,the HMGB1 and RAGE expression decreased significantly,and the activation of the NF-κB/NLRP3 pathway was antagonized along with the inhibition of p-NF-κB and NLRP3 protein expression.Additionally,NAS exhibited an anti-inflammatory effect by reducing IL-1βexpression.The inhibitory of RAGE binding to HMGB1 by RAGE inhibitor FPS-ZM1 led to a significant decrease of p-NF-κB and NLRP3 expression,so as to the IL-1βexpression and retinal edema,accompanied by an increase of RGCs in RIR rats.CONCLUSION:NAS may exhibit a neuroprotective effect against RIR via the HMGB1/RAGE/NF-κB signaling pathway,which may be a useful therapeutic target for retinal disease.展开更多
Vision is an ability that depends on the precise structure and functioning of the retina.Any kind of stress or injury can disrupt the retinal architecture and leads to vision impairment,vision loss,and blindness.Immun...Vision is an ability that depends on the precise structure and functioning of the retina.Any kind of stress or injury can disrupt the retinal architecture and leads to vision impairment,vision loss,and blindness.Immune system and immune response function maintain homeostasis in the microenvironment.Several genetic,metabolic,and environmental factors may alter retinal homeostasis,and these events may initiate various inflammatory cascades.The prolonged inflammatory state may contribute to the initiation and development of retinal disorders such as glaucoma,age-related macular degeneration,diabetic retinopathy,and retinitis pigmentosa,which pose a threat to vision.In the current review,we attempted to provide sufficient evidence on the role of inflammation in these retinal disorders.Moreover,this review paves the way to focus on therapeutic targets of the disease,which are found to be promising.展开更多
The transcription factor Sox11 plays important roles in retinal neurogenesis during vertebrate eye development.However,its function in retina regeneration remains elusive.Here we report that Sox11 b,a zebrafish Sox11 ...The transcription factor Sox11 plays important roles in retinal neurogenesis during vertebrate eye development.However,its function in retina regeneration remains elusive.Here we report that Sox11 b,a zebrafish Sox11 homolog,regulates the migration and fate determination of Müller glia-derived progenitors(MGPCs)in an adult zebrafish model of mechanical retinal injury.Following a stab injury,the expression of Sox11 b was induced in proliferating MGPCs in the retina.Sox11 b knockdown did not affect MGPC formation at 4 days post-injury,although the nuclear morphology and subsequent radial migration of MGPCs were alte red.At 7 days post-injury,Sox11 b knockdown res ulted in an increased proportion of MGPCs in the inner retina and a decreased propo rtion of MGPCs in the outer nuclear layer,compared with controls.Furthermore,Sox11 b knockdown led to reduced photoreceptor regeneration,while it increased the numbe rs of newborn amacrines and retinal ganglion cells.Finally,quantitative polymerase chain reaction analysis revealed that Sox11 b regulated the expression of Notch signaling components in the retina,and Notch inhibition partially recapitulated the Sox11 b knockdown phenotype,indicating that Notch signaling functions downstream of Sox11 b.Our findings imply that Sox11 b plays key roles in MGPC migration and fate determination during retina regeneration in zebrafish,which may have critical im plications for future explorations of retinal repair in mammals.展开更多
Microvasculature of the retina is considered an alternative marker of cerebral vascular risk in healthy populations.However,the ability of retinal vasculature changes,specifically focusing on retinal vessel diameter,t...Microvasculature of the retina is considered an alternative marker of cerebral vascular risk in healthy populations.However,the ability of retinal vasculature changes,specifically focusing on retinal vessel diameter,to predict the recurrence of cerebrovascular events in patients with ischemic stroke has not been determined comprehensively.While previous studies have shown a link between retinal vessel diameter and recurrent cerebrovascular events,they have not incorporated this information into a predictive model.Therefore,this study aimed to investigate the relationship between retinal vessel diameter and subsequent cerebrovascular events in patients with acute ischemic stroke.Additionally,we sought to establish a predictive model by combining retinal veessel diameter with traditional risk factors.We performed a prospective observational study of 141 patients with acute ischemic stroke who were admitted to the First Affiliated Hospital of Jinan University.All of these patients underwent digital retinal imaging within 72 hours of admission and were followed up for 3 years.We found that,after adjusting for related risk factors,patients with acute ischemic stroke with mean arteriolar diameter within 0.5-1.0 disc diameters of the disc margin(MAD_(0.5-1.0DD))of≥74.14μm and mean venular diameter within 0.5-1.0 disc diameters of the disc margin(MVD_(0.5-1.0DD))of≥83.91μm tended to experience recurrent cerebrovascular events.We established three multivariate Cox proportional hazard regression models:model 1 included traditional risk factors,model 2 added MAD_(0.5-1.0DD)to model 1,and model 3 added MVD0.5-1.0DD to model 1.Model 3 had the greatest potential to predict subsequent cerebrovascular events,followed by model 2,and finally model 1.These findings indicate that combining retinal venular or arteriolar diameter with traditional risk factors could improve the prediction of recurrent cerebrovascular events in patients with acute ischemic stroke,and that retinal imaging could be a useful and non-invasive method for identifying high-risk patients who require closer monitoring and more aggressive management.展开更多
Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models.Mesenchymal stromal cells are well positioned as therapeutics because they address the und...Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models.Mesenchymal stromal cells are well positioned as therapeutics because they address the underlying mechanisms of neurodegeneration,namely trophic factor deprivation and neuroinflammation.Most studies have focused on the beneficial effects of mesenchymal stromal cell transplantation on neuronal survival or functional improvement.However,little attention has been paid to the interaction between mesenchymal stromal cells and the host immune system due to the immunomodulatory properties of mesenchymal stromal cells and the long-held belief of the immunoprivileged status of the central nervous system.Here,we review the crosstalk between mesenchymal stromal cells and the immune system in general and in the context of the central nervous system,focusing on recent work in the retina and the importance of the type of transplantation.展开更多
Glaucoma is a leading cause of irreve rsible blindness wo rldwide,and previous studies have shown that,in addition to affecting the eyes,it also causes abnormalities in the brain.However,it is not yet clear how the pr...Glaucoma is a leading cause of irreve rsible blindness wo rldwide,and previous studies have shown that,in addition to affecting the eyes,it also causes abnormalities in the brain.However,it is not yet clear how the primary visual cortex(V1)is altered in glaucoma.This study used DBA/2J mice as a model for spontaneous secondary glaucoma.The aim of the study was to compare the electrophysiological and histomorphological chara cteristics of neurons in the V1between 9-month-old DBA/2J mice and age-matched C57BL/6J mice.We conducted single-unit recordings in the V1 of light-anesthetized mice to measure the visually induced responses,including single-unit spiking and gamma band oscillations.The morphology of layerⅡ/Ⅲneurons was determined by neuronal nuclear antigen staining and Nissl staining of brain tissue sections.Eighty-seven neurons from eight DBA/2J mice and eighty-one neurons from eight C57BL/6J mice were examined.Compared with the C57BL/6J group,V1 neurons in the DBA/2J group exhibited weaker visual tuning and impaired spatial summation.Moreove r,fewer neuro ns were observed in the V1 of DBA/2J mice compared with C57BL/6J mice.These findings suggest that DBA/2J mice have fewer neurons in the VI compared with C57BL/6J mice,and that these neurons have impaired visual tuning.Our findings provide a better understanding of the pathological changes that occur in V1 neuron function and morphology in the DBA/2J mouse model.This study might offer some innovative perspectives regarding the treatment of glaucoma.展开更多
BACKGROUND In patients with metastatic colorectal cancer(mCRC),the treatment options are limited and have been proved to be affected by rat sarcoma virus(RAS)mutational status.In RAS wild-type(wt)patients,the combinat...BACKGROUND In patients with metastatic colorectal cancer(mCRC),the treatment options are limited and have been proved to be affected by rat sarcoma virus(RAS)mutational status.In RAS wild-type(wt)patients,the combination of antiepidermal growth factor receptor(EGFR)monoclonal antibodies with chemotherapy(CT)is more effective than CT alone.On the other hand,RAS-mutated patients are not eligible for treatment with anti-EGFR antibodies.CASE SUMMARY Eleven patients with initially RAS-mutated mCRC were followed from diagnosis to May 2022.At the time of cell-free DNA determination,five patients had undergone one CT line,five patients had undergone two CT lines,and one patient had undergone three CT lines(all in combination with bevacizumab).At the second and third treatment lines[second line(2L),third line(3L)],patients with neo-RAS wt received a combination of CT and cetuximab.In neo-RAS wt patients treated with anti-EGFR,our findings indicated an increase in progression-free survival for both 2L and 3L(14.5 mo,P=0.119 and 3.9 mo,P=0.882,respectively).Regarding 2L overall survival,we registered a slight increase in neo-RAS wt patients treated with anti-EGFR(33.6 mo vs 32.4 mo,P=0.385).At data cut-off,two patients were still alive:A RAS-mutated patient undergoing 3L treatment and a neo-RAS wt patient who received 2L treatment with anti-EGFR(ongoing).CONCLUSION Our case series demonstrated that monitoring RAS mutations in mCRC by liquid biopsy may provide an additional treatment line for neo-RAS wt patients.展开更多
Ras homolog enriched in brain(Rheb) is a small GTPase that activates mammalian target of rapamycin complex 1(mTORC1).Previous studies have shown that constitutively active Rheb can enhance the regeneration of sensory ...Ras homolog enriched in brain(Rheb) is a small GTPase that activates mammalian target of rapamycin complex 1(mTORC1).Previous studies have shown that constitutively active Rheb can enhance the regeneration of sensory axons after spinal cord injury by activating downstream effectors of mTOR.S6K1 and4E-BP1 are important downstream effectors of mTORC1.In this study,we investigated the role of Rheb/mTOR and its downstream effectors S6K1 and 4E-BP1in the protection of retinal ganglion cells.We transfected an optic nerve crush mouse model with adeno-associated viral 2-mediated constitutively active Rheb and observed the effects on retinal ganglion cell survival and axon regeneration.We found that overexpression of constitutively active Rheb promoted survival of retinal ganglion cells in the acute(14 days) and chronic(21 and 42 days) stages of injury.We also found that either co-expression of the dominant-negative S6K1mutant or the constitutively active 4E-BP1 mutant together with constitutively active Rheb markedly inhibited axon regeneration of retinal ganglion cells.This suggests that mTORC1-mediated S6K1 activation and 4E-BP1 inhibition were necessary components for constitutively active Rheb-induced axon regeneration.However,only S6K1 activation,but not 4E-BP1 knockdown,induced axon regeneration when applied alone.Furthermore,S6K1 activation promoted the survival of retinal ganglion cells at 14 days post-injury,whereas 4E-BP1 knockdown unexpectedly slightly decreased the survival of retinal ganglion cells at 14 days postinjury.Ove rexpression of constitutively active 4E-BP1 increased the survival of retinal ganglion cells at 14 days post-injury.Likewise,co-expressing constitutively active Rheb and constitutively active 4E-BP1 markedly increased the survival of retinal ganglion cells compared with overexpression of constitutively active Rheb alone at 14 days post-injury.These findings indicate that functional 4E-BP1 and S6K1 are neuroprotective and that 4E-BP1 may exert protective effects through a pathway at least partially independent of Rhe b/mTOR.Together,our results show that constitutively active Rheb promotes the survival of retinal ganglion cells and axon regeneration through modulating S6K1 and 4E-BP1 activity.Phosphorylated S6K1 and 4E-BP1 promote axon regeneration but play an antagonistic role in the survival of retinal ganglion cells.展开更多
Elevated intraocular pressure(IOP)is one of the causes of retinal ischemia/reperfusion injury,which results in NRP3 inflammasome activation and leads to visual damage.Homerla is repo rted to play a protective role in ...Elevated intraocular pressure(IOP)is one of the causes of retinal ischemia/reperfusion injury,which results in NRP3 inflammasome activation and leads to visual damage.Homerla is repo rted to play a protective role in neuroinflammation in the cerebrum.However,the effects of Homerla on NLRP3inflammasomes in retinal ischemia/reperfusion injury caused by elevated IOP remain unknown.In our study,animal models we re constructed using C57BL/6J and Homer1^(flox/-)/Homerla^(+/-)/Nestin-Cre^(+/-)mice with elevated IOP-induced retinal ischemia/repe rfusion injury.For in vitro expe riments,the oxygen-glucose deprivation/repe rfusion injury model was constructed with M uller cells.We found that Homerla ove rexpression amelio rated the decreases in retinal thickness and Muller cell viability after ischemia/reperfusion injury.Furthermore,Homerla knockdown promoted NF-κB P65^(Ser536)activation via caspase-8,NF-κB P65 nuclear translocation,NLRP3 inflammasome formation,and the production and processing of interleukin-1βand inte rleukin-18.The opposite results we re observed with Homerla ove rexpression.Finally,the combined administration of Homerla protein and JSH-23 significantly inhibited the reduction in retinal thickness in Homer1^(flox/-)Homer1a^(+/-)/Nestin-Cre^(+/-)mice and apoptosis in M uller cells after ischemia/reperfusion injury.Taken together,these studies demonstrate that Homer1a exerts protective effects on retinal tissue and M uller cells via the caspase-8/NF-KB P65/NLRP3 pathway after I/R injury.展开更多
Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate.Howeve r,it is unclear what factors play a role in this process.In this study,we searched a GEO database and foun...Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate.Howeve r,it is unclear what factors play a role in this process.In this study,we searched a GEO database and found that expression of platelet factor 4 was markedly up-regulated after sciatic nerve injury.Platelet factor is an important molecule in cell apoptosis,diffe rentiation,survival,and proliferation.Further,polymerase chain reaction and immunohistochemical staining confirmed the change in platelet factor 4 in the sciatic nerve at different time points after injury.Enzyme-linked immunosorbent assay confirmed that platelet factor 4 was secreted by Schwann cells.We also found that silencing platelet factor 4 decreased the proliferation and migration of primary cultured Schwann cells,while exogenously applied platelet factor 4 stimulated Schwann cell prolife ration and migration and neuronal axon growth.Furthermore,knocking out platelet factor 4 inhibited the prolife ration of Schwann cells in injured rat sciatic nerve.These findings suggest that Schwann cell-secreted platelet factor 4 may facilitate peripheral nerve repair and regeneration by regulating Schwann cell activation and axon growth.Thus,platelet factor 4 may be a potential therapeutic target for traumatic peripheral nerve injury.展开更多
Dysfunction in circadian rhythms is a common occurrence in patients with Alzheimer’s disease.A predominant function of the retina is circadian synchronization,carrying information to the brain through the retinohypot...Dysfunction in circadian rhythms is a common occurrence in patients with Alzheimer’s disease.A predominant function of the retina is circadian synchronization,carrying information to the brain through the retinohypothalamic tract,which projects to the suprachiasmatic nucleus.Notably,Alzheimer’s disease hallmarks,including amyloid-β,are present in the retinas of Alzheimer’s disease patients,followed/associated by structural and functional disturbances.However,the mechanistic link between circadian dysfunction and the pathological changes affecting the retina in Alzheimer’s disease is not fully understood,although some studies point to the possibility that retinal dysfunction could be considered an early pathological process that directly modulates the circadian rhythm.展开更多
d-Allulose, a rare sugar, exerts anti-obesity effects by inhibiting hepatic lipogenesis and promoting energy expenditure. Medium-chain triglycerides (MCTs) consist of three medium-chain fatty acids connected by glycer...d-Allulose, a rare sugar, exerts anti-obesity effects by inhibiting hepatic lipogenesis and promoting energy expenditure. Medium-chain triglycerides (MCTs) consist of three medium-chain fatty acids connected by glycerol. MCTs have been extensively investigated for their ability to reduce body fat accumulation. We previously investigated the anti-obesity effects of a combination of dietary d-allulose and MCT (5% - 13%) in rats;however, we could not confirm the anti-obesity effects of MCT or observed synergetic effects between d-allulose and MCT on body fat loss. We speculated that our previous studies were influenced by the excessive amount of MCT in the diets. Therefore, in this study, we aimed to investigate the anti-obesity effects of the simultaneous intake of d-allulose and MCT in rats fed an obesity-inducing high-fat diet with a low amount of MCTs (2%). Thirty-two male Wistar rats (3-week-old) were randomly divided into four groups: control, d-allulose, MCT, and d-allulose + MCT groups. Rats in each group were fed ad libitum on a control (no d-Allulose or MCT), 5% d-allulose, 2% MCT, or 5% d-allulose + 2% MCT diets for 16 weeks. Abdominal adipose tissue weights were significantly lower in the d-allulose diet group than in the control group, whereas no differences were observed between results of the MCT-supplemented groups. The total body fat mass was significantly lower in the d-allulose and MCT diet groups than in the control group, but no differences were observed between the MCT-supplemented groups. These results suggested that anti-obesity effects of dietary d-allulose were observed, and the effects of dietary MCTs were weaker than those of d-allulose. Moreover, we confirmed the interaction between dietary d-allulose and MCT on indicators of obesity. Interestingly, their effects were not synergistic, as MCT supplementation offset the anti-obesity effects of dietary d-allulose. However, the specific mechanisms underlying those effects remain unknown, warranting further investigation.展开更多
AIM:To review and summarize the mechanism hypothesis,influencing factors and possible consequences of macular retinal displacement after idiopathic macular hole(IMH)surgery.METHODS:PubMed and Web of Science database w...AIM:To review and summarize the mechanism hypothesis,influencing factors and possible consequences of macular retinal displacement after idiopathic macular hole(IMH)surgery.METHODS:PubMed and Web of Science database was searched for studies published before April 2023 on“Retinal displacement”,“Idiopathic macular holes”,and“Macular displacement”.RESULTS:Recently,more academics have begun to focus on retinal displacement following idiopathic macular holes.They found that internal limiting membrane(ILM)peeling was the main cause of inducing postoperative position shift in the macular region.Moreover,several studies have revealed that the macular hole itself,as well as ILM peeling method,will have an impact on the result.In addition,this phenomenon is related to postoperative changes in macular retinal thickness,cone outer segment tips line recovery,the occurrence of dissociated optic nerve fiber layer(DONFL)and the degree of metamorphopsia.CONCLUSION:As a subclinical phenomenon,the clinical significance of postoperative macular displacement cannot be underestimated as it may affect the recovery of anatomy and function.展开更多
Objective:To evaluate the protective effects of probiotic microorganisms on the reproductive and nervous systems of male rats treated with acrylamide.Methods:Thirty-two rats were randomly divided into 4 groups and rec...Objective:To evaluate the protective effects of probiotic microorganisms on the reproductive and nervous systems of male rats treated with acrylamide.Methods:Thirty-two rats were randomly divided into 4 groups and received normal saline through gavage(control),acrylamide 20 mg/kg body weight,acrylamide plus probiotic microorganisms(Lactobacillus acidophilus,Lactobacillus casei,Lactobacillus bulgaricus,Lactobacillus rhamnosus,Bifidobacterium breve,Bifidobacterium infantis,Streptococcus thermophilus and fructooligosaccharides,all mixed in sachets)20 or 200 mg/kg body weight,respectively.After 30 days,the testis,prostate,seminal vesicle and cerebellum were removed,fixed and stained with hematoxylin-eosin(H&E).The Johnsen score was used to classify spermatogenesis.Cavalieri's principle method was used to evaluate the total volume(in mm3)of the testes.The number of each intratubular cell type as well as intertubular Leydig cells in whole samples was measured using the physical dissector counting techniques.Stereological analysis and the grids were used to determine the volume of cerebellar layers as well as the Purkinje cell number.Results:The testis weight decreased significantly in the acrylamide-treated group compared to the other groups(P<0.001).The number of spermatogonia,spermatocytes,spermatids and Leydig cells in the acrylamide-treated group were significantly less compared to the control group(P<0.05),while they were increased significantly in the acrylamide+200 mg/kg probiotic group(P<0.05;P<0.01).The mean Johnsen score in the acrylamide-treated group was lower than in the control group(P<0.001).Acrylamide-induced changes including congestion,vacuolization in the secretory epithelial cells,and epithelial rupture were observed in the prostate and seminal vesicle.The volumes of cerebellar layers were decreased in the acrylamide group compared to the control group while recovered in both probiotic treated groups.Conclusions:Probiotic microorganisms alleviate acrylamide-induced toxicities against the reproductive and cerebellar tissues in rats.展开更多
基金supported by Instituto de Salud CarlosⅢ(ISCⅢ):PI19/00203cofunded by ERDF+9 种基金"A way to make Europe"to MPVP and DGAP122/00900RD16/0008/0026 co-funded by ERDF"A way to make Europe"to MPVP and RD21/0002/0014financiado porla Unión Europea-NextGenerationEUFundación Robles Chillida to DGARED2018-102499-TPID201 9-106498GB-I00funded by MCIN/AEI/10.13039/501100011 033 to MVSIHU FOReSIGHT[ANR-18-IAHU-0001] to SP
文摘Taurine is considered a non-essential amino acid because it is synthesized by most mammals.However,dietary intake of taurine may be necessary to achieve the physiological levels required for the development,maintenance,and function of certain tissues.Taurine may be especially important for the retina.The concentration of taurine in the retina is higher than that in any other tissue in the body and taurine deficiency causes retinal oxidative stress,apoptosis,and degeneration of photoreceptors and retinal ganglion cells.Low plasma taurine levels may also underlie retinal degeneration in humans and therefore,taurine administration could exert retinal neuroprotective effects.Taurine has antioxidant,anti-apoptotic,immunomodulatory,and calcium homeostasis-regulatory properties.This review summarizes the role of taurine in retinal health and disease,where it appears that taurine may be a promising nutraceutical.
基金supported by the National Natural Science Foundation of China,Nos.81974134(to XX)and 82000895(to HL)National Key Research and Development Program of China,Nos.2021YFA1101200&2021YFA1101202National Natural Science Foundation of Hunan Province,China,No.2022JJ30071(to HL)。
文摘The retina of zebrafish can regenerate completely after injury.M ultiple studies have demonstrated that metabolic alte rations occur during retinal damage;however to date no study has identified a link between metabolites and retinal regeneration of zebrafish.Here,we performed an unbiased metabolome sequencing in the N-methyl-D-aspartic acid-damaged retinas of zebrafish to demonstrate the metabolomic mechanism of retinal regeneration.Among the differentially-ex pressed metabolites,we found a significant decrease in p-aminobenzoic acid in the N-methyl-D-aspartic acid-damaged retinas of zebrafish.Then,we investigated the role of p-aminobenzoic acid in retinal regeneration in adult zebrafish.Impo rtantly,p-aminobenzoic acid activated Achaetescute complex-like 1a expression,thereby promoting Müller glia reprogramming and division,as well as Müller glia-derived progenitor cell proliferation.Finally,we eliminated folic acid and inflammation as downstream effectors of PABA and demonstrated that PABA had little effect on Müller glia distribution.Taken together,these findings show that PABA contributes to retinal regeneration through activation of Achaetescute complex-like 1a expression in the N-methyl-Daspartic acid-damaged retinas of zebrafish.
文摘Research Background and Purpose: The number of diabetic patients is rapidly increasing, making it crucial to find methods to prevent diabetic retinopathy (DR), a leading cause of blindness. We investigated the effects of prophylactic pattern scanning laser retinal photocoagulation on DR development in Spontaneously Diabetic Torii (SDT) fatty rats as a new prevention approach. Methods: Photocoagulation was applied to the right eyes of 8-week-old Spontaneously Diabetic Torii (SDT) fatty rats, with the left eyes serving as untreated controls. Electroretinography at 9 and 39 weeks of age and pathological examinations, including immunohistochemistry for vascular endothelial growth factor and glial fibrillary acidic protein at 24 and 40 weeks of age, were performed on both eyes. Results: There were no significant differences in amplitude and prolongation of the OP waves between the right and left eyes in SDT fatty rats at 39 weeks of age. Similarly, no significant differences in pathology and immunohistochemistry were observed between the right and left eyes in SDT fatty rats at 24 and 40 weeks of age. Conclusion: Prophylactic pattern scanning retinal laser photocoagulation did not affect the development of diabetic retinopathy in SDT fatty rats.
基金Supported by National Natural Science Foundation of China(No.82160195)Jiangxi Double-Thousand Plan High-Level Talent Project of Science and Technology Innovation(No.jxsq2023201036)+1 种基金Key R&D Program of Jiangxi Province(No.20223BBH80014)General Science and Technology Program of the Department of Traditional Chinese Medicine,Jiangxi Provincial Health Commission(No.2017A241).
文摘AIM:To examine the disparities in macular retinal vascular density between individuals with connective tissue disease-related interstitial lung disease(CTD-ILD)and healthy controls(HCs)by optical coherence tomography angiography(OCTA)and to investigate the changes in microvascular density in abnormal eyes.METHODS:For a retrospective case-control study,a total of 16 patients(32 eyes)diagnosed with CTD-ILD were selected as the ILD group.The 16 healthy volunteers with 32 eyes,matched in terms of age and sex with the patients,were recruited as control group.The macular retina’s superficial retinal layer(SRL)and deep retinal layer(DRL)were examined and scanned using OCTA in each individual eye.The densities of retinal microvascular(MIR),macrovascular(MAR),and total microvascular(TMI)were calculated and compared.Changes in retinal vascular density in the macular region were analyzed using three different segmentation methods:central annuli segmentation method(C1-C6),hemispheric segmentation method[uperior right(SR),superior left(SL),inferior left(IL),and inferior right(IR)],and Early Treatment Diabetic Retinopathy Study(ETDRS)methods[superior(S),inferior(I),left(L),and right(R)].The data were analyzed using Version 9.0 of GraphPad prism and Pearson analysis.RESULTS:The OCTA data demonstrated a statistically significant difference(P<0.05)in macular retinal microvessel density between the two groups.Specifically,in the SRL and DRL analyses,the ILD group exhibited significantly lower surface density of MIR and TMI compared to the HCs group(P<0.05).Furthermore,using the hemispheric segmentation method,the ILD group showed notable reductions in SL,SR,and IL in the superficial retina(P<0.05),as well as marked decreases in SL and IR in the deep retina(P<0.05).Similarly,when employing the ETDRS method,the ILD group displayed substantial drops in superficial retinal S and I(P<0.05),along with notable reductions in deep retinal L,I,and R(P<0.05).In the central annuli segmentation method,the ILD group exhibited a significant decrease in the superficial retinal C2-4 region(P<0.05),whereas the deep retina showed a notable reduction in the C3-5 region(P<0.05).Additionally,there was an observed higher positive likelihood ratio in the superficial SR region and deep MIR.Furthermore,there was a negative correlation between conjunctival vascular density and both deep and superficial retinal TMI(P<0.001).CONCLUSION:Patients with CTD-ILD exhibits a significantly higher conjunctival vascular density compared to the HCs group.Conversely,their fundus retinal microvascular density is significantly lower.Furthermore,CTD-ILD patients display notably lower superficial and deep retinal vascular density in comparison to the HCs group.The inverse correlation between conjunctival vascular density and both superficial and deep retinal TMI suggests that detecting subtle changes in ocular microcirculation could potentially serve as an early diagnostic indicator for connective tissue diseases,thereby enhancing disease management.
基金supported by the National Natural Science Foundation of China,Nos.81901156(to ZZ),82271200(to ZZ),82171308(to XC)the Fundamental Research Funds for the Central Universities,No.xzy012022035(to ZZ)+1 种基金the Natural Science Foundation of Shaanxi Province,Nos.2021JM-261(to QK),2023-YBSF-303(to ZZ)Traditional Chinese Medicine Project of Shaanxi Province,No.2019-ZZ-JC047(to QK)。
文摘The organotypic retinal explant culture has been established for more than a decade and offers a range of unique advantages compared with in vivo experiments and cell cultures.However,the lack of systematic and continuous comparison between in vivo retinal development and the organotypic retinal explant culture makes this model controversial in postnatal retinal development studies.Thus,we aimed to verify the feasibility of using this model for postnatal retinal development studies by comparing it with the in vivo retina.In this study,we showed that postnatal retinal explants undergo normal development,and exhibit a consistent structure and timeline with retinas in vivo.Initially,we used SOX2 and PAX6 immunostaining to identify retinal progenitor cells.We then examined cell proliferation and migration by immunostaining with Ki-67 and doublecortin,respectively.Ki-67-and doublecortin-positive cells decreased in both in vivo and explants during postnatal retinogenesis,and exhibited a high degree of similarity in abundance and distribution between groups.Additionally,we used Ceh-10 homeodomain-containing homolog,glutamate-ammonia ligase(glutamine synthetase),neuronal nuclei,and ionized calcium-binding adapter molecule 1 immunostaining to examine the emergence of bipolar cells,Müller glia,mature neurons,and microglia,respectively.The timing and spatial patterns of the emergence of these cell types were remarkably consistent between in vivo and explant retinas.Our study showed that the organotypic retinal explant culture model had a high degree of consistency with the progression of in vivo early postnatal retina development.The findings confirm the accuracy and credibility of this model and support its use for long-term,systematic,and continuous observation.
基金Supported by grant from Fundamental Research Grant Scheme by Ministry of Higher Education(MoHE)600-IRMI/FRGS 5/3(101/2019).
文摘AIM:To investigate the stability of the seven housekeeping genes:beta-actin(ActB),glyceraldehyde-3-phosphate dehydrogenase(GAPDH),18s ribosomal unit 5(18s),cyclophilin A(CycA),hypoxanthine-guanine phosphoribosyl transferase(HPRT),ribosomal protein large P0(36B4)and terminal uridylyl transferase 1(U6)in the diabetic retinal tissue of rat model.METHODS:The expression of these seven genes in rat retinal tissues was determined using real-time quantitative reverse transcription polymerase chain reaction(RT-qPCR)in two groups;normal control rats and streptozotocininduced diabetic rats.The stability analysis of gene expression was investigated using geNorm,NormFinder,BestKeeper,and comparative delta-Ct(ΔCt)algorithms.RESULTS:The 36B4 gene was stably expressed in the retinal tissues of normal control animals;however,it was less stable in diabetic retinas.The 18s gene was expressed consistently in both normal control and diabetic rats’retinal tissue.That this gene was the best reference for data normalisation in RT-qPCR studies that used the retinal tissue of streptozotocin-induced diabetic rats.Furthermore,there was no ideal gene stably expressed for use in all experimental settings.CONCLUSION:Identifying relevant genes is a need for achieving RT-qPCR validity and reliability and must be appropriately achieved based on a specific experimental setting.
基金Supported by the National Natural Science Foundation of China(No.82071888)the Natural Science Foundation of Shandong Province(No.ZR2021MH351,No.ZR2020MH074)+1 种基金the Introduction and Cultivation Project for Young Innovative Talents in Shandong ProvinceWeifang Science and Technology Development Plan(No.2021GX057).
文摘AIM:To observe the effects of N-acetylserotonin(NAS)administration on retinal ischemia-reperfusion(RIR)injury in rats and explore the underlying mechanisms involving the high mobility group box 1(HMGB1)/receptor for advanced glycation end-products(RAGE)/nuclear factor-kappa B(NF-κB)signaling pathway.METHODS:A rat model of RIR was developed by increasing the pressure of the anterior chamber of the eye.Eighty male Sprague Dawley were randomly divided into five groups:sham group(n=8),RIR group(n=28),RIR+NAS group(n=28),RIR+FPS-ZM1 group(n=8)and RIR+NAS+FPS-ZM1 group(n=8).The therapeutic effects of NAS were examined by hematoxylin-eosin(H&E)staining,and retinal ganglion cells(RGCs)counting.The expression of interleukin 1 beta(IL-1β),HMGB1,RAGE,and nod-like receptor 3(NLRP3)proteins and the phosphorylation of nuclear factorkappa B(p-NF-κB)were analyzed by immunohistochemistry staining and Western blot analysis.The expression of HMGB1 protein was also detected by enzyme-linked immunosorbent assay(ELISA).RESULTS:H&E staining results showed that NAS significantly reduced retinal edema and increased the number of RGCs in RIR rats.With NAS therapy,the HMGB1 and RAGE expression decreased significantly,and the activation of the NF-κB/NLRP3 pathway was antagonized along with the inhibition of p-NF-κB and NLRP3 protein expression.Additionally,NAS exhibited an anti-inflammatory effect by reducing IL-1βexpression.The inhibitory of RAGE binding to HMGB1 by RAGE inhibitor FPS-ZM1 led to a significant decrease of p-NF-κB and NLRP3 expression,so as to the IL-1βexpression and retinal edema,accompanied by an increase of RGCs in RIR rats.CONCLUSION:NAS may exhibit a neuroprotective effect against RIR via the HMGB1/RAGE/NF-κB signaling pathway,which may be a useful therapeutic target for retinal disease.
基金supported by a National Institutes of Health grant,EY029709(to NKS)a Research to Prevent Blindness unrestricted grant to Kresge Eye Instituteby P30EY04068(LDH)at Wayne State University(to NKS)。
文摘Vision is an ability that depends on the precise structure and functioning of the retina.Any kind of stress or injury can disrupt the retinal architecture and leads to vision impairment,vision loss,and blindness.Immune system and immune response function maintain homeostasis in the microenvironment.Several genetic,metabolic,and environmental factors may alter retinal homeostasis,and these events may initiate various inflammatory cascades.The prolonged inflammatory state may contribute to the initiation and development of retinal disorders such as glaucoma,age-related macular degeneration,diabetic retinopathy,and retinitis pigmentosa,which pose a threat to vision.In the current review,we attempted to provide sufficient evidence on the role of inflammation in these retinal disorders.Moreover,this review paves the way to focus on therapeutic targets of the disease,which are found to be promising.
基金supported by the National Key Research and Development Project of China,Nos.2017YFA0104100(to JL),2017YFA0701304(to HX)National Natural Science Foundation of China Nos.81970820(to HX),31930068(to JL)。
文摘The transcription factor Sox11 plays important roles in retinal neurogenesis during vertebrate eye development.However,its function in retina regeneration remains elusive.Here we report that Sox11 b,a zebrafish Sox11 homolog,regulates the migration and fate determination of Müller glia-derived progenitors(MGPCs)in an adult zebrafish model of mechanical retinal injury.Following a stab injury,the expression of Sox11 b was induced in proliferating MGPCs in the retina.Sox11 b knockdown did not affect MGPC formation at 4 days post-injury,although the nuclear morphology and subsequent radial migration of MGPCs were alte red.At 7 days post-injury,Sox11 b knockdown res ulted in an increased proportion of MGPCs in the inner retina and a decreased propo rtion of MGPCs in the outer nuclear layer,compared with controls.Furthermore,Sox11 b knockdown led to reduced photoreceptor regeneration,while it increased the numbe rs of newborn amacrines and retinal ganglion cells.Finally,quantitative polymerase chain reaction analysis revealed that Sox11 b regulated the expression of Notch signaling components in the retina,and Notch inhibition partially recapitulated the Sox11 b knockdown phenotype,indicating that Notch signaling functions downstream of Sox11 b.Our findings imply that Sox11 b plays key roles in MGPC migration and fate determination during retina regeneration in zebrafish,which may have critical im plications for future explorations of retinal repair in mammals.
基金supported by the Youth Fund of Fundamental Research Fund for the Central Universities of Jinan University,No.11622303(to YZ).
文摘Microvasculature of the retina is considered an alternative marker of cerebral vascular risk in healthy populations.However,the ability of retinal vasculature changes,specifically focusing on retinal vessel diameter,to predict the recurrence of cerebrovascular events in patients with ischemic stroke has not been determined comprehensively.While previous studies have shown a link between retinal vessel diameter and recurrent cerebrovascular events,they have not incorporated this information into a predictive model.Therefore,this study aimed to investigate the relationship between retinal vessel diameter and subsequent cerebrovascular events in patients with acute ischemic stroke.Additionally,we sought to establish a predictive model by combining retinal veessel diameter with traditional risk factors.We performed a prospective observational study of 141 patients with acute ischemic stroke who were admitted to the First Affiliated Hospital of Jinan University.All of these patients underwent digital retinal imaging within 72 hours of admission and were followed up for 3 years.We found that,after adjusting for related risk factors,patients with acute ischemic stroke with mean arteriolar diameter within 0.5-1.0 disc diameters of the disc margin(MAD_(0.5-1.0DD))of≥74.14μm and mean venular diameter within 0.5-1.0 disc diameters of the disc margin(MVD_(0.5-1.0DD))of≥83.91μm tended to experience recurrent cerebrovascular events.We established three multivariate Cox proportional hazard regression models:model 1 included traditional risk factors,model 2 added MAD_(0.5-1.0DD)to model 1,and model 3 added MVD0.5-1.0DD to model 1.Model 3 had the greatest potential to predict subsequent cerebrovascular events,followed by model 2,and finally model 1.These findings indicate that combining retinal venular or arteriolar diameter with traditional risk factors could improve the prediction of recurrent cerebrovascular events in patients with acute ischemic stroke,and that retinal imaging could be a useful and non-invasive method for identifying high-risk patients who require closer monitoring and more aggressive management.
基金funded by the Spanish Ministry of Economy and Competitiveness,No.PID(2019)-106498GB-100 (to MVS)by the Instituto de Salud CarlosⅢ,Fondo Europeo de Desarrollo Regional"Una manera de hacer Europa",No.PI19/00071 (to MAB)+2 种基金the RETICS subprograms of Spanish Networks OftoRed,Nos.RD16/0008/0026 (to DGB) and RD16/0008/0016 (to DGB)RICORS Terav,No.RD16/0011/0001 (to DGB)from Instituto de Salud CarlosⅢby the Fundacion Seneca,Agencia de Cienciay Tecnologia Región de Murcia,No.19881/GERM/15 (all to MVS)
文摘Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models.Mesenchymal stromal cells are well positioned as therapeutics because they address the underlying mechanisms of neurodegeneration,namely trophic factor deprivation and neuroinflammation.Most studies have focused on the beneficial effects of mesenchymal stromal cell transplantation on neuronal survival or functional improvement.However,little attention has been paid to the interaction between mesenchymal stromal cells and the host immune system due to the immunomodulatory properties of mesenchymal stromal cells and the long-held belief of the immunoprivileged status of the central nervous system.Here,we review the crosstalk between mesenchymal stromal cells and the immune system in general and in the context of the central nervous system,focusing on recent work in the retina and the importance of the type of transplantation.
基金supported by the STI 2030-Major Projects 2022ZD0208500(to DY)the National Natural Science Foundation of China,Nos.82072011(to YX),82121003(to DY),82271120(to YS)+2 种基金Sichuan Science and Technology Program,No.2022ZYD0066(to YS)a grant from Chinese Academy of Medical Science,No.2019-12M-5-032(to YS)the Fundamental Research Funds for the Central Universities,No.ZYGX2021YGLH219(to KC)。
文摘Glaucoma is a leading cause of irreve rsible blindness wo rldwide,and previous studies have shown that,in addition to affecting the eyes,it also causes abnormalities in the brain.However,it is not yet clear how the primary visual cortex(V1)is altered in glaucoma.This study used DBA/2J mice as a model for spontaneous secondary glaucoma.The aim of the study was to compare the electrophysiological and histomorphological chara cteristics of neurons in the V1between 9-month-old DBA/2J mice and age-matched C57BL/6J mice.We conducted single-unit recordings in the V1 of light-anesthetized mice to measure the visually induced responses,including single-unit spiking and gamma band oscillations.The morphology of layerⅡ/Ⅲneurons was determined by neuronal nuclear antigen staining and Nissl staining of brain tissue sections.Eighty-seven neurons from eight DBA/2J mice and eighty-one neurons from eight C57BL/6J mice were examined.Compared with the C57BL/6J group,V1 neurons in the DBA/2J group exhibited weaker visual tuning and impaired spatial summation.Moreove r,fewer neuro ns were observed in the V1 of DBA/2J mice compared with C57BL/6J mice.These findings suggest that DBA/2J mice have fewer neurons in the VI compared with C57BL/6J mice,and that these neurons have impaired visual tuning.Our findings provide a better understanding of the pathological changes that occur in V1 neuron function and morphology in the DBA/2J mouse model.This study might offer some innovative perspectives regarding the treatment of glaucoma.
文摘BACKGROUND In patients with metastatic colorectal cancer(mCRC),the treatment options are limited and have been proved to be affected by rat sarcoma virus(RAS)mutational status.In RAS wild-type(wt)patients,the combination of antiepidermal growth factor receptor(EGFR)monoclonal antibodies with chemotherapy(CT)is more effective than CT alone.On the other hand,RAS-mutated patients are not eligible for treatment with anti-EGFR antibodies.CASE SUMMARY Eleven patients with initially RAS-mutated mCRC were followed from diagnosis to May 2022.At the time of cell-free DNA determination,five patients had undergone one CT line,five patients had undergone two CT lines,and one patient had undergone three CT lines(all in combination with bevacizumab).At the second and third treatment lines[second line(2L),third line(3L)],patients with neo-RAS wt received a combination of CT and cetuximab.In neo-RAS wt patients treated with anti-EGFR,our findings indicated an increase in progression-free survival for both 2L and 3L(14.5 mo,P=0.119 and 3.9 mo,P=0.882,respectively).Regarding 2L overall survival,we registered a slight increase in neo-RAS wt patients treated with anti-EGFR(33.6 mo vs 32.4 mo,P=0.385).At data cut-off,two patients were still alive:A RAS-mutated patient undergoing 3L treatment and a neo-RAS wt patient who received 2L treatment with anti-EGFR(ongoing).CONCLUSION Our case series demonstrated that monitoring RAS mutations in mCRC by liquid biopsy may provide an additional treatment line for neo-RAS wt patients.
基金National Natural Science Foundation of China,Nos.82070967,81770930the Natural Science Foundation of Hunan Province,No.2020jj4788 (all to BJ)。
文摘Ras homolog enriched in brain(Rheb) is a small GTPase that activates mammalian target of rapamycin complex 1(mTORC1).Previous studies have shown that constitutively active Rheb can enhance the regeneration of sensory axons after spinal cord injury by activating downstream effectors of mTOR.S6K1 and4E-BP1 are important downstream effectors of mTORC1.In this study,we investigated the role of Rheb/mTOR and its downstream effectors S6K1 and 4E-BP1in the protection of retinal ganglion cells.We transfected an optic nerve crush mouse model with adeno-associated viral 2-mediated constitutively active Rheb and observed the effects on retinal ganglion cell survival and axon regeneration.We found that overexpression of constitutively active Rheb promoted survival of retinal ganglion cells in the acute(14 days) and chronic(21 and 42 days) stages of injury.We also found that either co-expression of the dominant-negative S6K1mutant or the constitutively active 4E-BP1 mutant together with constitutively active Rheb markedly inhibited axon regeneration of retinal ganglion cells.This suggests that mTORC1-mediated S6K1 activation and 4E-BP1 inhibition were necessary components for constitutively active Rheb-induced axon regeneration.However,only S6K1 activation,but not 4E-BP1 knockdown,induced axon regeneration when applied alone.Furthermore,S6K1 activation promoted the survival of retinal ganglion cells at 14 days post-injury,whereas 4E-BP1 knockdown unexpectedly slightly decreased the survival of retinal ganglion cells at 14 days postinjury.Ove rexpression of constitutively active 4E-BP1 increased the survival of retinal ganglion cells at 14 days post-injury.Likewise,co-expressing constitutively active Rheb and constitutively active 4E-BP1 markedly increased the survival of retinal ganglion cells compared with overexpression of constitutively active Rheb alone at 14 days post-injury.These findings indicate that functional 4E-BP1 and S6K1 are neuroprotective and that 4E-BP1 may exert protective effects through a pathway at least partially independent of Rhe b/mTOR.Together,our results show that constitutively active Rheb promotes the survival of retinal ganglion cells and axon regeneration through modulating S6K1 and 4E-BP1 activity.Phosphorylated S6K1 and 4E-BP1 promote axon regeneration but play an antagonistic role in the survival of retinal ganglion cells.
基金supported by the Youth Development Project of Air Force Military Medical University,No.21 QNPY072Key Project of Shaanxi Provincial Natural Science Basic Research Program,No.2023-JC-ZD-48(both to FF)。
文摘Elevated intraocular pressure(IOP)is one of the causes of retinal ischemia/reperfusion injury,which results in NRP3 inflammasome activation and leads to visual damage.Homerla is repo rted to play a protective role in neuroinflammation in the cerebrum.However,the effects of Homerla on NLRP3inflammasomes in retinal ischemia/reperfusion injury caused by elevated IOP remain unknown.In our study,animal models we re constructed using C57BL/6J and Homer1^(flox/-)/Homerla^(+/-)/Nestin-Cre^(+/-)mice with elevated IOP-induced retinal ischemia/repe rfusion injury.For in vitro expe riments,the oxygen-glucose deprivation/repe rfusion injury model was constructed with M uller cells.We found that Homerla ove rexpression amelio rated the decreases in retinal thickness and Muller cell viability after ischemia/reperfusion injury.Furthermore,Homerla knockdown promoted NF-κB P65^(Ser536)activation via caspase-8,NF-κB P65 nuclear translocation,NLRP3 inflammasome formation,and the production and processing of interleukin-1βand inte rleukin-18.The opposite results we re observed with Homerla ove rexpression.Finally,the combined administration of Homerla protein and JSH-23 significantly inhibited the reduction in retinal thickness in Homer1^(flox/-)Homer1a^(+/-)/Nestin-Cre^(+/-)mice and apoptosis in M uller cells after ischemia/reperfusion injury.Taken together,these studies demonstrate that Homer1a exerts protective effects on retinal tissue and M uller cells via the caspase-8/NF-KB P65/NLRP3 pathway after I/R injury.
基金supported by the National Natural Science Foundation of China,Nos.31730031,32130060the National Natural Science Foundation of China,No.31971276(to JH)+1 种基金the Natural Science Foundation of Jiangsu Province,No.BK20202013(to XG)the Natural Science Foundation of Jiangsu Higher Education Institutions of China(Major Program),No.19KJA320005(to JH)。
文摘Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate.Howeve r,it is unclear what factors play a role in this process.In this study,we searched a GEO database and found that expression of platelet factor 4 was markedly up-regulated after sciatic nerve injury.Platelet factor is an important molecule in cell apoptosis,diffe rentiation,survival,and proliferation.Further,polymerase chain reaction and immunohistochemical staining confirmed the change in platelet factor 4 in the sciatic nerve at different time points after injury.Enzyme-linked immunosorbent assay confirmed that platelet factor 4 was secreted by Schwann cells.We also found that silencing platelet factor 4 decreased the proliferation and migration of primary cultured Schwann cells,while exogenously applied platelet factor 4 stimulated Schwann cell prolife ration and migration and neuronal axon growth.Furthermore,knocking out platelet factor 4 inhibited the prolife ration of Schwann cells in injured rat sciatic nerve.These findings suggest that Schwann cell-secreted platelet factor 4 may facilitate peripheral nerve repair and regeneration by regulating Schwann cell activation and axon growth.Thus,platelet factor 4 may be a potential therapeutic target for traumatic peripheral nerve injury.
文摘Dysfunction in circadian rhythms is a common occurrence in patients with Alzheimer’s disease.A predominant function of the retina is circadian synchronization,carrying information to the brain through the retinohypothalamic tract,which projects to the suprachiasmatic nucleus.Notably,Alzheimer’s disease hallmarks,including amyloid-β,are present in the retinas of Alzheimer’s disease patients,followed/associated by structural and functional disturbances.However,the mechanistic link between circadian dysfunction and the pathological changes affecting the retina in Alzheimer’s disease is not fully understood,although some studies point to the possibility that retinal dysfunction could be considered an early pathological process that directly modulates the circadian rhythm.
文摘d-Allulose, a rare sugar, exerts anti-obesity effects by inhibiting hepatic lipogenesis and promoting energy expenditure. Medium-chain triglycerides (MCTs) consist of three medium-chain fatty acids connected by glycerol. MCTs have been extensively investigated for their ability to reduce body fat accumulation. We previously investigated the anti-obesity effects of a combination of dietary d-allulose and MCT (5% - 13%) in rats;however, we could not confirm the anti-obesity effects of MCT or observed synergetic effects between d-allulose and MCT on body fat loss. We speculated that our previous studies were influenced by the excessive amount of MCT in the diets. Therefore, in this study, we aimed to investigate the anti-obesity effects of the simultaneous intake of d-allulose and MCT in rats fed an obesity-inducing high-fat diet with a low amount of MCTs (2%). Thirty-two male Wistar rats (3-week-old) were randomly divided into four groups: control, d-allulose, MCT, and d-allulose + MCT groups. Rats in each group were fed ad libitum on a control (no d-Allulose or MCT), 5% d-allulose, 2% MCT, or 5% d-allulose + 2% MCT diets for 16 weeks. Abdominal adipose tissue weights were significantly lower in the d-allulose diet group than in the control group, whereas no differences were observed between results of the MCT-supplemented groups. The total body fat mass was significantly lower in the d-allulose and MCT diet groups than in the control group, but no differences were observed between the MCT-supplemented groups. These results suggested that anti-obesity effects of dietary d-allulose were observed, and the effects of dietary MCTs were weaker than those of d-allulose. Moreover, we confirmed the interaction between dietary d-allulose and MCT on indicators of obesity. Interestingly, their effects were not synergistic, as MCT supplementation offset the anti-obesity effects of dietary d-allulose. However, the specific mechanisms underlying those effects remain unknown, warranting further investigation.
文摘AIM:To review and summarize the mechanism hypothesis,influencing factors and possible consequences of macular retinal displacement after idiopathic macular hole(IMH)surgery.METHODS:PubMed and Web of Science database was searched for studies published before April 2023 on“Retinal displacement”,“Idiopathic macular holes”,and“Macular displacement”.RESULTS:Recently,more academics have begun to focus on retinal displacement following idiopathic macular holes.They found that internal limiting membrane(ILM)peeling was the main cause of inducing postoperative position shift in the macular region.Moreover,several studies have revealed that the macular hole itself,as well as ILM peeling method,will have an impact on the result.In addition,this phenomenon is related to postoperative changes in macular retinal thickness,cone outer segment tips line recovery,the occurrence of dissociated optic nerve fiber layer(DONFL)and the degree of metamorphopsia.CONCLUSION:As a subclinical phenomenon,the clinical significance of postoperative macular displacement cannot be underestimated as it may affect the recovery of anatomy and function.
基金Shahid Sadoughi University of Medical Sciences,Yazd,Iran(grant number 5689).
文摘Objective:To evaluate the protective effects of probiotic microorganisms on the reproductive and nervous systems of male rats treated with acrylamide.Methods:Thirty-two rats were randomly divided into 4 groups and received normal saline through gavage(control),acrylamide 20 mg/kg body weight,acrylamide plus probiotic microorganisms(Lactobacillus acidophilus,Lactobacillus casei,Lactobacillus bulgaricus,Lactobacillus rhamnosus,Bifidobacterium breve,Bifidobacterium infantis,Streptococcus thermophilus and fructooligosaccharides,all mixed in sachets)20 or 200 mg/kg body weight,respectively.After 30 days,the testis,prostate,seminal vesicle and cerebellum were removed,fixed and stained with hematoxylin-eosin(H&E).The Johnsen score was used to classify spermatogenesis.Cavalieri's principle method was used to evaluate the total volume(in mm3)of the testes.The number of each intratubular cell type as well as intertubular Leydig cells in whole samples was measured using the physical dissector counting techniques.Stereological analysis and the grids were used to determine the volume of cerebellar layers as well as the Purkinje cell number.Results:The testis weight decreased significantly in the acrylamide-treated group compared to the other groups(P<0.001).The number of spermatogonia,spermatocytes,spermatids and Leydig cells in the acrylamide-treated group were significantly less compared to the control group(P<0.05),while they were increased significantly in the acrylamide+200 mg/kg probiotic group(P<0.05;P<0.01).The mean Johnsen score in the acrylamide-treated group was lower than in the control group(P<0.001).Acrylamide-induced changes including congestion,vacuolization in the secretory epithelial cells,and epithelial rupture were observed in the prostate and seminal vesicle.The volumes of cerebellar layers were decreased in the acrylamide group compared to the control group while recovered in both probiotic treated groups.Conclusions:Probiotic microorganisms alleviate acrylamide-induced toxicities against the reproductive and cerebellar tissues in rats.