期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A combined denoising method of empirical mode decomposition and singular spectrum analysis applied to Jason altimeter waveforms: A case of the Caspian Sea
1
作者 Wenguan Jiang Wei You 《Geodesy and Geodynamics》 CSCD 2022年第4期327-342,共16页
During the satellite pulse propagation and reception, the altimeter waveform is inevitably affected by noise. To reduce the noise level in Jason altimeter waveforms, we used singular spectrum analysis(SSA),empirical m... During the satellite pulse propagation and reception, the altimeter waveform is inevitably affected by noise. To reduce the noise level in Jason altimeter waveforms, we used singular spectrum analysis(SSA),empirical mode decomposition(EMD), and the combination of SSA and EMD to obtain the denoised waveforms. The advantages of the combined method were verified and the accuracy of the mean sea surface height(MSSH) model was improved. Comparing the denoising effect of the three methods, the results show that the signal-to-noise ratio(SNR), correlation coefficient and root-mean-square error are effectively improved by the combination of SSA and EMD. The sea surface heights(SSHs) were remeasured with a 50% threshold retracker of denoised waveforms, and the MSSH model of the Caspian Sea with a grid of 1’× 1’was established from the retracked SSHs of Jason-1/2/3. Taking the mean value of the four models as a control, it is found that the model calculated by the combined denoising method has the highest accuracy. This indicates that using the combined denoising method to reduce the noise level is beneficial to improve the accuracy of the MSSH model. 展开更多
关键词 Altimetry waveforms Jason-1/2/3 Combined method Waveform retracking Mean sea surface height
下载PDF
A multi-subwaveform parametric retracker of the radar satellite altimetric waveform and recovery of gravity anomalies over coastal oceans 被引量:15
2
作者 HWANG CheinWay 《Science China Earth Sciences》 SCIE EI CAS 2010年第4期610-616,共7页
The quality of satellite radar altimetric data is very important in studies of geodesy,geophysics,and oceanography.Over coastal oceans,altimeter waveforms are contaminated by the terrain and physical environments so t... The quality of satellite radar altimetric data is very important in studies of geodesy,geophysics,and oceanography.Over coastal oceans,altimeter waveforms are contaminated by the terrain and physical environments so that the accuracy of altimeter data is lower than that over open oceans.Here we develop a new multi-subwaveform parametric retracker(MSPR) to improve the quality of altimeter data for the recovery of gravity anomaly in coastal oceans.The least squares collocation method is used to recover the residual gravity anomaly over the coastal water from altimetric data.The waveform data records from Geosat/GM around Taiwan Island are practically retracked with MSPR.When compared with the Taiwan geoid height,the results retracked by MSPR are more accurate than those retracked by the well-known β-5-parmeter method and from the geophysical data records(GDRs).The gravity anomalies over Taiwan coastal waters are calculated from the retracked altimeter data with the least squares collocation.When we compared gravity anomalies computed using altimeter GDRs with the ship-borne gravity data over Taiwan coastal ocean,we found that the results from retracked data are more accurate than those from GDRs. 展开更多
关键词 multi-subwaveform PARAMETRIC retracker WAVEFORM retracking for RADAR SATELLITE altimetry gravity anomaly least squares collocation Geosat/GM
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部