This paper introduces the principles of using color histogram to match images in CBIR. And a prototype CBIR system is designed with color matching function. A new method using 2-dimensional color histogram based on hu...This paper introduces the principles of using color histogram to match images in CBIR. And a prototype CBIR system is designed with color matching function. A new method using 2-dimensional color histogram based on hue and saturation to extract and represent color information of an image is presented. We also improve the Euclidean-distance algorithm by adding Center of Color to it. The experiment shows modifications made to Euclidean-distance signif-icantly elevate the quality and efficiency of retrieval.展开更多
Content based image retrieval(CBIR)techniques have been widely deployed in many applications for seeking the abundant information existed in images.Due to large amounts of storage and computational requirements of CBI...Content based image retrieval(CBIR)techniques have been widely deployed in many applications for seeking the abundant information existed in images.Due to large amounts of storage and computational requirements of CBIR,outsourcing image search work to the cloud provider becomes a very attractive option for many owners with small devices.However,owing to the private content contained in images,directly outsourcing retrieval work to the cloud provider apparently bring about privacy problem,so the images should be protected carefully before outsourcing.This paper presents a secure retrieval scheme for the encrypted images in the YUV color space.With this scheme,the discrete cosine transform(DCT)is performed on the Y component.The resulting DC coefficients are encrypted with stream cipher technology and the resulting AC coefficients as well as other two color components are encrypted with value permutation and position scrambling.Then the image owner transmits the encrypted images to the cloud server.When receiving a query trapdoor form on query user,the server extracts AC-coefficients histogram from the encrypted Y component and extracts two color histograms from the other two color components.The similarity between query trapdoor and database image is measured by calculating the Manhattan distance of their respective histograms.Finally,the encrypted images closest to the query image are returned to the query user.展开更多
A novel image retrieval approach based on color features and anisotropic directional information is proposed for content based image retrieval systems (CBIR). The color feature is described by the color histogram ...A novel image retrieval approach based on color features and anisotropic directional information is proposed for content based image retrieval systems (CBIR). The color feature is described by the color histogram (CH), which is translation and rotation invariant. However, the CH does not contain spatial information which is very important for the image retrieval. To overcome this shortcoming, the subband energy of the lifting directionlet transform (L-DT) is proposed to describe the directional information, in which L-DT is characterized by multi-direction and anisotropic basis functions compared with the wavelet transform. A global similarity measure is designed to implement the fusion of both color feature and anisotropic directionality for the retrieval process. The retrieval experiments using a set of COREL images demonstrate that the higher query precision and better visual effect can be achieved.展开更多
In this paper, we present a novel and efficient scheme for extracting, indexing and retrieving color images. Our motivation was to reduce the space overhead of partition-based approaches taking advantage of the fact t...In this paper, we present a novel and efficient scheme for extracting, indexing and retrieving color images. Our motivation was to reduce the space overhead of partition-based approaches taking advantage of the fact that only a relatively low number of distinct values of a particular visual feature is present in most images. To extract color feature and build indices into our image database we take into consideration factors such as human color perception and perceptual range, and the image is partitioned into a set of regions by using a simple classifying scheme. The compact color feature vector and the spatial color histogram, which are extracted from the seqmented image region, are used for representing the color and spatial information in the image. We have also developed the region-based distance measures to compare the similarity of two images. Extensive tests on a large image collection were conducted to demonstrate the effectiveness of the proposed approach.展开更多
The technique of image retrieval is widely used in science experiment, military affairs, public security, advertisement, family entertainment, library and so on. The existing algorithms are mostly based on the charact...The technique of image retrieval is widely used in science experiment, military affairs, public security, advertisement, family entertainment, library and so on. The existing algorithms are mostly based on the characteristics of color, texture, shape and space relationship. This paper introduced an image retrieval algorithm, which is based on the matching of weighted EMD(Earth Mover’s Distance) distance and texture distance. EMD distance is the distance between the histograms of two images in HSV(Hue, Saturation, Value) color space, and texture distance is the L1 distance between the texture spectra of two images. The experimental results show that the retrieval rate can be increased obviously by using the proposed algorithm.展开更多
Aiming at shortcomings of traditional image retrieval systems, a new image retrieval approach based on color features of image combining intuitive fuzzy theory with genetic algorithm is proposed. Each image is segment...Aiming at shortcomings of traditional image retrieval systems, a new image retrieval approach based on color features of image combining intuitive fuzzy theory with genetic algorithm is proposed. Each image is segmented into a constant number of sub-images in vertical direction. Color features are extracted from every sub-image to get chromosome coding. It is considered that fuzzy membership and intuitive fuzzy hesitancy degree of every pixel's color in image are associated to all the color histogram bins. Certain feature, fuzzy feature and intuitive fuzzy feature of colors in an image, are used together to describe the content of image. Efficient combinations of sub-image are selected according to operation of selecting, crossing and variation. Retrieval results are obtained from image matching based on these color feature combinations of sub-images. Tests show that this approach can improve the accuracy of image retrieval in the case of not decreasing the speed of image retrieval. Its mean precision is above 80 %.展开更多
The perfect image retrieval and retrieval time are the two major challenges inCBIR systems. To improve the retrieval accuracy, the whole database is searched basedon many image characteristics such as color, shape, te...The perfect image retrieval and retrieval time are the two major challenges inCBIR systems. To improve the retrieval accuracy, the whole database is searched basedon many image characteristics such as color, shape, texture and edge information whichleads to more time consumption. This paper presents a new fuzzy based CBIR method,which utilizes colour, shape and texture attributes of the image. Fuzzy rule based systemis developed by combining color, shape, and texture feature for enhanced image recovery.In this approach, DWT is used to pull out the texture characteristics and the region basedmoment invariant is utilized to pull out the shape features of an image. Color similarityand texture attributes are extorted using customized Color Difference Histogram (CDH).The performance evaluation based on precision and BEP measures reveals the superiorityof the proposed method over renowned obtainable approaches.展开更多
Aiming at the problem of video key frame extraction, a density peak clustering algorithm is proposed, which uses the HSV histogram to transform high-dimensional abstract video image data into quantifiable low-dimensio...Aiming at the problem of video key frame extraction, a density peak clustering algorithm is proposed, which uses the HSV histogram to transform high-dimensional abstract video image data into quantifiable low-dimensional data, and reduces the computational complexity while capturing image features. On this basis, the density peak clustering algorithm is used to cluster these low-dimensional data and find the cluster centers. Combining the clustering results, the final key frames are obtained. A large number of key frame extraction experiments for different types of videos show that the algorithm can extract different number of key frames by combining video content, overcome the shortcoming of traditional key frame extraction algorithm which can only extract a fixed number of key frames, and the extracted key frames can represent the main content of video accurately.展开更多
In this paper, a new approach to the optimal retrieval of the ocean color based on the variational method is developed by setting up a rational target functional combining with the Broydor Fletcher, Goldfarb, Shanno ...In this paper, a new approach to the optimal retrieval of the ocean color based on the variational method is developed by setting up a rational target functional combining with the Broydor Fletcher, Goldfarb, Shanno (BFGS) optimal algorithm. The numerical tests and the exemplary retrievals are carried out and compared with the statistical retrievals and the optimal retrievals based on the genetic algorithm. The results show that this approach enjoys a higher accuracy as compared to the statistical method and a higher efficiency as compared to the genetic algorithm. The optimal retrieval method presented in this paper provides a new idea for the ocean color inversion and could also be used as a reference for the direct assimilation of the satellite data into the ecological models.展开更多
We report a method of color-image retrieval based on fuzzy correlation, inwhich α-cut relations in fuzzy set theory are applied to defining color match and heightmatch of color peaks for synthesizing fuzzy correlatio...We report a method of color-image retrieval based on fuzzy correlation, inwhich α-cut relations in fuzzy set theory are applied to defining color match and heightmatch of color peaks for synthesizing fuzzy correlation of two color histograms, and RGBspace is partitioned into six sub-regions in the experiment for the regional colorcomparisons. Experimental results show that the efficiency of the color-image retrievalcan be effectively improved by this approach.展开更多
基金Supported by the Project of Science & Technology Depart ment of Shanghai (No.055115001)
文摘This paper introduces the principles of using color histogram to match images in CBIR. And a prototype CBIR system is designed with color matching function. A new method using 2-dimensional color histogram based on hue and saturation to extract and represent color information of an image is presented. We also improve the Euclidean-distance algorithm by adding Center of Color to it. The experiment shows modifications made to Euclidean-distance signif-icantly elevate the quality and efficiency of retrieval.
基金This work is supported in part by the National Natural Science Foundation of China under grant numbers 61672294,61502242,61702276,U1536206,U1405254,61772283,61602253,61601236 and 61572258,in part by Six peak talent project of Jiangsu Province(R2016L13),in part by National Key R&D Program of China under grant 2018YFB1003205,in part by NRF-2016R1D1A1B03933294,in part by the Jiangsu Basic Research Programs-Natural Science Foundation under grant numbers BK20150925 and BK20151530,in part by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)fund,in part by the Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CICAEET)fund,China.Zhihua Xia is supported by BK21+program from the Ministry of Education of Korea.
文摘Content based image retrieval(CBIR)techniques have been widely deployed in many applications for seeking the abundant information existed in images.Due to large amounts of storage and computational requirements of CBIR,outsourcing image search work to the cloud provider becomes a very attractive option for many owners with small devices.However,owing to the private content contained in images,directly outsourcing retrieval work to the cloud provider apparently bring about privacy problem,so the images should be protected carefully before outsourcing.This paper presents a secure retrieval scheme for the encrypted images in the YUV color space.With this scheme,the discrete cosine transform(DCT)is performed on the Y component.The resulting DC coefficients are encrypted with stream cipher technology and the resulting AC coefficients as well as other two color components are encrypted with value permutation and position scrambling.Then the image owner transmits the encrypted images to the cloud server.When receiving a query trapdoor form on query user,the server extracts AC-coefficients histogram from the encrypted Y component and extracts two color histograms from the other two color components.The similarity between query trapdoor and database image is measured by calculating the Manhattan distance of their respective histograms.Finally,the encrypted images closest to the query image are returned to the query user.
基金supported by the National High Technology Research and Development Program of China (863 Program) (2007AA12Z1362007AA12Z223)+2 种基金the National Basic Research Program of China (973Program) (2006CB705707)the National Natural Science Foundation of China (60672126, 60607010)the Program for Cheung Kong Scholars and Innovative Research Team in University (IRT0645)
文摘A novel image retrieval approach based on color features and anisotropic directional information is proposed for content based image retrieval systems (CBIR). The color feature is described by the color histogram (CH), which is translation and rotation invariant. However, the CH does not contain spatial information which is very important for the image retrieval. To overcome this shortcoming, the subband energy of the lifting directionlet transform (L-DT) is proposed to describe the directional information, in which L-DT is characterized by multi-direction and anisotropic basis functions compared with the wavelet transform. A global similarity measure is designed to implement the fusion of both color feature and anisotropic directionality for the retrieval process. The retrieval experiments using a set of COREL images demonstrate that the higher query precision and better visual effect can be achieved.
文摘In this paper, we present a novel and efficient scheme for extracting, indexing and retrieving color images. Our motivation was to reduce the space overhead of partition-based approaches taking advantage of the fact that only a relatively low number of distinct values of a particular visual feature is present in most images. To extract color feature and build indices into our image database we take into consideration factors such as human color perception and perceptual range, and the image is partitioned into a set of regions by using a simple classifying scheme. The compact color feature vector and the spatial color histogram, which are extracted from the seqmented image region, are used for representing the color and spatial information in the image. We have also developed the region-based distance measures to compare the similarity of two images. Extensive tests on a large image collection were conducted to demonstrate the effectiveness of the proposed approach.
文摘The technique of image retrieval is widely used in science experiment, military affairs, public security, advertisement, family entertainment, library and so on. The existing algorithms are mostly based on the characteristics of color, texture, shape and space relationship. This paper introduced an image retrieval algorithm, which is based on the matching of weighted EMD(Earth Mover’s Distance) distance and texture distance. EMD distance is the distance between the histograms of two images in HSV(Hue, Saturation, Value) color space, and texture distance is the L1 distance between the texture spectra of two images. The experimental results show that the retrieval rate can be increased obviously by using the proposed algorithm.
基金Sponsored by the Ministerial Level Foundation(20061823)
文摘Aiming at shortcomings of traditional image retrieval systems, a new image retrieval approach based on color features of image combining intuitive fuzzy theory with genetic algorithm is proposed. Each image is segmented into a constant number of sub-images in vertical direction. Color features are extracted from every sub-image to get chromosome coding. It is considered that fuzzy membership and intuitive fuzzy hesitancy degree of every pixel's color in image are associated to all the color histogram bins. Certain feature, fuzzy feature and intuitive fuzzy feature of colors in an image, are used together to describe the content of image. Efficient combinations of sub-image are selected according to operation of selecting, crossing and variation. Retrieval results are obtained from image matching based on these color feature combinations of sub-images. Tests show that this approach can improve the accuracy of image retrieval in the case of not decreasing the speed of image retrieval. Its mean precision is above 80 %.
文摘The perfect image retrieval and retrieval time are the two major challenges inCBIR systems. To improve the retrieval accuracy, the whole database is searched basedon many image characteristics such as color, shape, texture and edge information whichleads to more time consumption. This paper presents a new fuzzy based CBIR method,which utilizes colour, shape and texture attributes of the image. Fuzzy rule based systemis developed by combining color, shape, and texture feature for enhanced image recovery.In this approach, DWT is used to pull out the texture characteristics and the region basedmoment invariant is utilized to pull out the shape features of an image. Color similarityand texture attributes are extorted using customized Color Difference Histogram (CDH).The performance evaluation based on precision and BEP measures reveals the superiorityof the proposed method over renowned obtainable approaches.
文摘Aiming at the problem of video key frame extraction, a density peak clustering algorithm is proposed, which uses the HSV histogram to transform high-dimensional abstract video image data into quantifiable low-dimensional data, and reduces the computational complexity while capturing image features. On this basis, the density peak clustering algorithm is used to cluster these low-dimensional data and find the cluster centers. Combining the clustering results, the final key frames are obtained. A large number of key frame extraction experiments for different types of videos show that the algorithm can extract different number of key frames by combining video content, overcome the shortcoming of traditional key frame extraction algorithm which can only extract a fixed number of key frames, and the extracted key frames can represent the main content of video accurately.
基金Project supported by the National Natural Science Foundation of China(Grant No. 41105012)Startup Fund Scientific Research from the Institute of Meteorology, PLA University of Science and Technology(Grant No. 2009QX08)
文摘In this paper, a new approach to the optimal retrieval of the ocean color based on the variational method is developed by setting up a rational target functional combining with the Broydor Fletcher, Goldfarb, Shanno (BFGS) optimal algorithm. The numerical tests and the exemplary retrievals are carried out and compared with the statistical retrievals and the optimal retrievals based on the genetic algorithm. The results show that this approach enjoys a higher accuracy as compared to the statistical method and a higher efficiency as compared to the genetic algorithm. The optimal retrieval method presented in this paper provides a new idea for the ocean color inversion and could also be used as a reference for the direct assimilation of the satellite data into the ecological models.
文摘We report a method of color-image retrieval based on fuzzy correlation, inwhich α-cut relations in fuzzy set theory are applied to defining color match and heightmatch of color peaks for synthesizing fuzzy correlation of two color histograms, and RGBspace is partitioned into six sub-regions in the experiment for the regional colorcomparisons. Experimental results show that the efficiency of the color-image retrievalcan be effectively improved by this approach.