期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Efficiency-Driven Custom Chatbot Development: Unleashing LangChain, RAG, and Performance-Optimized LLM Fusion
1
作者 S.Vidivelli Manikandan Ramachandran A.Dharunbalaji 《Computers, Materials & Continua》 SCIE EI 2024年第8期2423-2442,共20页
This exploration acquaints a momentous methodology with custom chatbot improvement that focuses on pro-ficiency close by viability.We accomplish this by joining three key innovations:LangChain,Retrieval Augmented Gene... This exploration acquaints a momentous methodology with custom chatbot improvement that focuses on pro-ficiency close by viability.We accomplish this by joining three key innovations:LangChain,Retrieval Augmented Generation(RAG),and enormous language models(LLMs)tweaked with execution proficient strategies like LoRA and QLoRA.LangChain takes into consideration fastidious fitting of chatbots to explicit purposes,guaranteeing engaged and important collaborations with clients.RAG’s web scratching capacities engage these chatbots to get to a tremendous store of data,empowering them to give exhaustive and enlightening reactions to requests.This recovered data is then decisively woven into reaction age utilizing LLMs that have been calibrated with an emphasis on execution productivity.This combination approach offers a triple advantage:further developed viability,upgraded client experience,and extended admittance to data.Chatbots become proficient at taking care of client questions precisely and productively,while instructive and logically pertinent reactions make a more regular and drawing in cooperation for clients.At last,web scratching enables chatbots to address a more extensive assortment of requests by conceding them admittance to a more extensive information base.By digging into the complexities of execution proficient LLM calibrating and underlining the basic job of web-scratched information,this examination offers a critical commitment to propelling custom chatbot plan and execution.The subsequent chatbots feature the monstrous capability of these advancements in making enlightening,easy to understand,and effective conversational specialists,eventually changing the manner in which clients cooperate with chatbots. 展开更多
关键词 LangChain retrieval augumental generation(RAG) fine tuning
下载PDF
A machine learning approach to query generation in plagiarism source retrieval
2
作者 Lei-lei KONG Zhi-mao LU +1 位作者 Hao-liang QI Zhong-yuan HAN 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第10期1556-1572,共17页
Plagiarism source retrieval is the core task of plagiarism detection. It has become the standard for plagiarism detection to use the queries extracted from suspicious documents to retrieve the plagiarism sources. Gene... Plagiarism source retrieval is the core task of plagiarism detection. It has become the standard for plagiarism detection to use the queries extracted from suspicious documents to retrieve the plagiarism sources. Generating queries from a suspicious document is one of the most important steps in plagiarism source retrieval. Heuristic-based query generation methods are widely used in the current research. Each heuristic-based method has its own advantages, and no one statistically outperforms the others on all suspicious document segments when generating queries for source retrieval. Further improvements on heuristic methods for source retrieval rely mainly on the experience of experts. This leads to difficulties in putting forward new heuristic methods that can overcome the shortcomings of the existing ones. This paper paves the way for a new statistical machine learning approach to select the best queries from the candidates. The statistical machine learning approach to query generation for source retrieval is formulated as a ranking framework. Specifically, it aims to achieve the optimal source retrieval performance for each suspicious document segment. The proposed method exploits learning to rank to generate queries from the candidates. To our knowledge, our work is the first research to apply machine learning methods to resolve the problem of query generation for source retrieval. To solve the essential problem of an absence of training data for learning to rank, the building of training samples for source retrieval is also conducted. We rigorously evaluate various aspects of the proposed method on the publicly available PAN source retrieval corpus. With respect to the established baselines, the experimental results show that applying our proposed query generation method based on machine learning yields statistically significant improvements over baselines in source retrieval effectiveness. 展开更多
关键词 Plagiarism detection Source retrieval Query generation Machine learning Learning to rank
原文传递
Multimodal Pretraining from Monolingual to Multilingual 被引量:1
3
作者 Liang Zhang Ludan Ruan +1 位作者 Anwen Hu Qin Jin 《Machine Intelligence Research》 EI CSCD 2023年第2期220-232,共13页
Multimodal pretraining has made convincing achievements in various downstream tasks in recent years.However,since the majority of the existing works construct models based on English,their applications are limited by ... Multimodal pretraining has made convincing achievements in various downstream tasks in recent years.However,since the majority of the existing works construct models based on English,their applications are limited by language.In this work,we address this issue by developing models with multimodal and multilingual capabilities.We explore two types of methods to extend multimodal pretraining model from monolingual to multilingual.Specifically,we propose a pretraining-based model named multilingual multimodal pretraining(MLMM),and two generalization-based models named multilingual CLIP(M-CLIP)and multilingual acquisition(MLA).In addition,we further extend the generalization-based models to incorporate the audio modality and develop the multilingual CLIP for vision,language,and audio(CLIP4VLA).Our models achieve state-of-the-art performances on multilingual vision-text retrieval,visual question answering,and image captioning benchmarks.Based on the experimental results,we discuss the pros and cons of the two types of models and their potential practical applications. 展开更多
关键词 Multilingual pretraining multimodal pretraining cross-lingual transfer multilingual generation cross-modal retrieval
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部