The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor l...The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor localization technologies generally used scene-specific 3D representations or were trained on specific datasets, making it challenging to balance accuracy and cost when applied to new scenes. Addressing this issue, this paper proposed a universal indoor visual localization method based on efficient image retrieval. Initially, a Multi-Layer Perceptron (MLP) was employed to aggregate features from intermediate layers of a convolutional neural network, obtaining a global representation of the image. This approach ensured accurate and rapid retrieval of reference images. Subsequently, a new mechanism using Random Sample Consensus (RANSAC) was designed to resolve relative pose ambiguity caused by the essential matrix decomposition based on the five-point method. Finally, the absolute pose of the queried user image was computed, thereby achieving indoor user pose estimation. The proposed indoor localization method was characterized by its simplicity, flexibility, and excellent cross-scene generalization. Experimental results demonstrated a positioning error of 0.09 m and 2.14° on the 7Scenes dataset, and 0.15 m and 6.37° on the 12Scenes dataset. These results convincingly illustrated the outstanding performance of the proposed indoor localization method.展开更多
A concept-based approach is expected to resolve the word sense ambiguities in information retrieval and apply the semantic importance of the concepts, instead of the term frequency, to representing the contents of a d...A concept-based approach is expected to resolve the word sense ambiguities in information retrieval and apply the semantic importance of the concepts, instead of the term frequency, to representing the contents of a document. Consequently, a formalized document framework is proposed. The document framework is used to express the meaning of a document with the concepts which are expressed by high semantic importance. The framework consists of two parts: the "domain" information and the "situation & background" information of a document. A document-extracting algorithm and a two-stage smoothing method are also proposed. The quantification of the similarity between the query and the document framework depends on the smoothing method. The experiments on the TREC6 collection demonstrate the feasibility and effectiveness of the proposed approach in information retrieval tasks. The average recall level precision of the model using the proposed approach is about 10% higher than that of traditional ones.展开更多
In order to evaluate the efficiency of the automated storage/retrieval system(AS/RS)accurately,and compare different layouts of the AS/RS using mean travel time,under randomized storage conditions,an exact,geometry-ba...In order to evaluate the efficiency of the automated storage/retrieval system(AS/RS)accurately,and compare different layouts of the AS/RS using mean travel time,under randomized storage conditions,an exact,geometry-based analytical model is presented.The model can be used to compute the expected single-command and dual-command travel time for a storage/retrieval(S/R)machine which can travel simultaneously horizontally and vertically as it moves along a storage aisle.The rack may be either square in time or non square in time.Additionally,the alternative layouts of the AS/RS and travel-time models are examined.Comparing with setting the I/O point at the left-lower corner of the rack,setting the I/O point at any point at the vertical edge can help enhance the efficiency of the AS/RS.展开更多
Content-based 3D model retrieval is of great help to facilitate the reuse of existing designs and to inspire designers during conceptual design. However, there is still a gap to apply it in industry due to the low tim...Content-based 3D model retrieval is of great help to facilitate the reuse of existing designs and to inspire designers during conceptual design. However, there is still a gap to apply it in industry due to the low time efficiency. This paper presents two new methods with high efficiency to build a Content-based 3D model retrieval system. First, an improvement is made on the "Shape Distribution (D2)" algorithm, and a new algorithm named "Quick D2" is proposed. Four sample 3D mechanical models are used in an experiment to compare the time cost of the two algorithms. The result indicates that the time cost of Quick D2 is much lower than that of D2, while the descriptors extracted by the two algorithms are almost the same. Second, an expandable 3D model repository index method with high performance, namely, RBK index, is presented. On the basis of RBK index, the search space is pruned effectively during the search process, leading to a speed up of the whole system. The factors that influence the values of the key parameters of RBK index are discussed and an experimental method to find the optimal values of the key parameters is given. Finally, "3D Searcher", a content-based 3D model retrieval system is developed. By using the methods proposed, the time cost for the system to respond one query online is reduced by 75% on average. The system has been implemented in a manufacturing enterprise, and practical query examples during a case of the automobile rear axle design are also shown. The research method presented shows a new research perspective and can effectively improve the content-based 3D model retrieval efficiency.展开更多
A hybrid model that is based on the Combination of keywords and concept was put forward. The hybrid model is built on vector space model and probabilistic reasoning network. It not only can exert the advantages of key...A hybrid model that is based on the Combination of keywords and concept was put forward. The hybrid model is built on vector space model and probabilistic reasoning network. It not only can exert the advantages of keywords retrieval and concept retrieval but also can compensate for their shortcomings. Their parameters can be adjusted according to different usage in order to accept the best information retrieval result, and it has been proved by our experiments.展开更多
It is common knowledge that continental retrieval especially for Qinghai-Xizang Plateau has not been solved todate. In order to explore applicable inverse model and method for continent including the plateau, in this ...It is common knowledge that continental retrieval especially for Qinghai-Xizang Plateau has not been solved todate. In order to explore applicable inverse model and method for continent including the plateau, in this study authors use an improved simultaneous physical retrieval method hereafter referred to as the ISPRM, for computing meteorological parameters from NOAA-10 satellite TOVS data. The retrieval results verified by nearby radiosondesshow that the ISPRM is more applicable for the continental plateau.展开更多
Conventional retrieval and neural network methods are used simultaneously to retrieve sea surface wind speed(SSWS)from HH-polarized Sentinel-1(S1)SAR images.The Polarization Ratio(PR)models combined with the CMOD5.N G...Conventional retrieval and neural network methods are used simultaneously to retrieve sea surface wind speed(SSWS)from HH-polarized Sentinel-1(S1)SAR images.The Polarization Ratio(PR)models combined with the CMOD5.N Geophysical Model Function(GMF)is used for SSWS retrieval from the HH-polarized SAR data.We compared different PR models developed based on previous C-band SAR data in HH-polarization for their applications to the S1 SAR data.The recently proposed CMODH,i.e.,retrieving SSWS directly from the HHpolarized S1 data is also validated.The results indicate that the CMODH model performs better than results achieved using the PR models.We proposed a neural network method based on the backward propagation(BP)neural network to retrieve SSWS from the S1 HH-polarized data.The SSWS retrieved using the BP neural network model agrees better with the buoy measurements and ASCAT dataset than the results achieved using the conventional methods.Compared to the buoy measurements,the bias,root mean square error(RMSE)and scatter index(SI)of wind speed retrieved by the BP neural network model are 0.10 m/s,1.38 m/s and 19.85%,respectively,while compared to the ASCAT dataset the three parameters of training set are–0.01 m/s,1.33 m/s and 15.10%,respectively.It is suggested that the BP neural network model has a potential application in retrieving SSWS from Sentinel-1 images acquired at HH-polarization.展开更多
In order to improve the accuracy and efficiency of 3D model retrieval,the method based on affinity propagation clustering algorithm is proposed. Firstly,projection ray-based method is proposed to improve the feature e...In order to improve the accuracy and efficiency of 3D model retrieval,the method based on affinity propagation clustering algorithm is proposed. Firstly,projection ray-based method is proposed to improve the feature extraction efficiency of 3D models. Based on the relationship between model and its projection,the intersection in 3D space is transformed into intersection in 2D space,which reduces the number of intersection and improves the efficiency of the extraction algorithm. In feature extraction,multi-layer spheres method is analyzed. The two-layer spheres method makes the feature vector more accurate and improves retrieval precision. Secondly,Semi-supervised Affinity Propagation ( S-AP) clustering is utilized because it can be applied to different cluster structures. The S-AP algorithm is adopted to find the center models and then the center model collection is built. During retrieval process,the collection is utilized to classify the query model into corresponding model base and then the most similar model is retrieved in the model base. Finally,75 sample models from Princeton library are selected to do the experiment and then 36 models are used for retrieval test. The results validate that the proposed method outperforms the original method and the retrieval precision and recall ratios are improved effectively.展开更多
In this paper,the application of an algorithm for precipitation retrieval based on Himawari-8 (H8) satellite infrared data is studied.Based on GPM precipitation data and H8 Infrared spectrum channel brightness tempera...In this paper,the application of an algorithm for precipitation retrieval based on Himawari-8 (H8) satellite infrared data is studied.Based on GPM precipitation data and H8 Infrared spectrum channel brightness temperature data,corresponding "precipitation field dictionary" and "channel brightness temperature dictionary" are formed.The retrieval of precipitation field based on brightness temperature data is studied through the classification rule of k-nearest neighbor domain (KNN) and regularization constraint.Firstly,the corresponding "dictionary" is constructed according to the training sample database of the matched GPM precipitation data and H8 brightness temperature data.Secondly,according to the fact that precipitation characteristics in small organizations in different storm environments are often repeated,KNN is used to identify the spectral brightness temperature signal of "precipitation" and "non-precipitation" based on "the dictionary".Finally,the precipitation field retrieval is carried out in the precipitation signal "subspace" based on the regular term constraint method.In the process of retrieval,the contribution rate of brightness temperature retrieval of different channels was determined by Bayesian model averaging (BMA) model.The preliminary experimental results based on the "quantitative" evaluation indexes show that the precipitation of H8 retrieval has a good correlation with the GPM truth value,with a small error and similar structure.展开更多
A variational method is developed to retrieve winds in the first step and then thermodynamic fields in the second step from Doppler radar observations. In the first step, wind fields are retrieved at two time levels: ...A variational method is developed to retrieve winds in the first step and then thermodynamic fields in the second step from Doppler radar observations. In the first step, wind fields are retrieved at two time levels: the beginning and ending times of the data assimilation period, simultaneously from two successive volume scans by using the weak form constraints provided by the mass continuity and vorticity equations. As the retrieved wind fields are expressed by Legendre polynomial expansions at the beginning and ending times, the time tendency term in the vorticity equation can be conveniently formulated, and the retrieved winds can be compared with the radar observed radial winds in the cost function at the precise time and position of each radar beam. In the second step, the perturbation pressure and temperature fields at the middle time are then derived from the retrieved wind fields and the velocity time tendency by using the weak form constraints provided by the three momentum equations. The merits of the new method are demonstrated by numerical experiments with simulated radar observations and compared with the traditional least squares methods which consider neither the precise observation times and positions nor the velocity time tendency. The new method is also applied to real radar data for a heavy rainfall event during the 2001 Meiyu season in China.展开更多
Scatterometer is an instrument which provides all-day and large-scale wind field information, and its application especially to wind retrieval always attracts meteorologists. Certain reasons cause large direction erro...Scatterometer is an instrument which provides all-day and large-scale wind field information, and its application especially to wind retrieval always attracts meteorologists. Certain reasons cause large direction error, so it is important to find where the error mainly comes. Does it mainly result from the background field, the normalized radar cross-section (NRCS) or the method of wind retrieval? It is valuable to research. First, depending on SDP2.0, the simulated 'true' NRCS is calculated from the simulated 'true' wind through the geophysical mode] function NSCAT2. The simulated background field is configured by adding a noise to the simulated 'true' wind with the non-divergence constraint. Also, the simulated 'measured' NRCS is formed by adding a noise to the simulated 'true' NRCS. Then, the sensitivity experiments are taken, and the new method of regularization is used to improve the ambiguity removal with simulation experiments. The results show that the accuracy of wind retrieval is more sensitive to the noise in the background than in the measured NRCS; compared with the two-dimensional variational (2DVAR) ambiguity removal method, the accuracy of wind retrieval can be improved with the new method of Tikhonov regularization through choosing an appropriate regularization parameter, especially for the case of large error in the background. The work will provide important information and a new method for the wind retrieval with real data.展开更多
For Microwave Humidity and Temperature sounder(MWHTS) measurements over the ocean, a cloud filtering method is presented to filter out cloud-and precipitation-affected observations by analyzing the sensitivity of the ...For Microwave Humidity and Temperature sounder(MWHTS) measurements over the ocean, a cloud filtering method is presented to filter out cloud-and precipitation-affected observations by analyzing the sensitivity of the simulated brightness temperatures of MWHTS to cloud liquid water, and using the root mean square error(RMSE)between observation and simulation in clear sky as a reference standard. The atmospheric temperature and humidity profiles are retrieved using MWHTS measurements with and without filtering by multiple linear regression(MLR),artificial neural networks(ANN) and one-dimensional variational(1DVAR) retrieval methods, respectively, and the effects of the filtering method on the retrieval accuracies are analyzed. The numerical results show that the filtering method can improve the retrieval accuracies of the MLR and the 1DVAR retrieval methods, but have little influence on that of the ANN. In addition, the dependencies of the retrieval methods upon the testing samples of brightness temperature are studied, and the results show that the 1DVAR retrieval method has great stability due to that the testing samples have great impact on the retrieval accuracies of the MLR and the ANN, but have little impact on that of the 1DVAR.展开更多
A three-dimensional variational method is proposed to simultaneously retrieve the 3-D atmospheric temperature and moisture profiles from satellite radiance measurements. To include both vertical structure and the hori...A three-dimensional variational method is proposed to simultaneously retrieve the 3-D atmospheric temperature and moisture profiles from satellite radiance measurements. To include both vertical structure and the horizontal patterns of the atmospheric temperature and moisture, an EOF technique is used to decompose the temperature and moisture field in a 3-D space. A number of numerical simulations are conducted and they demonstrate that the 3-D method is less sensitive to the observation errors compared to the 1-D method. When the observation error is more than 2.0 K, to get the best results, the truncation number for the EOF's expansion have to be restricted to 2 in the 1-D method, while it can be set as large as 40 in a 3-D method. This results in the truncation error being reduced and the retrieval accuracy being improved in the 3-D method. Compared to the 1-D method, the rms errors of the 3-D method are reduced by 48% and 36% for the temperature and moisture retrievals, respectively. Using the real satellite measured brightness temperatures at 0557 UTC 31 July 2002, the temperature and moisture profiles are retrieved over a region (20°-45°N, 100°- 125°E) and compared with 37 collocated radiosonde observations. The results show that the retrieval accuracy with a 3-D method is significantly higher than those with the 1-D method.展开更多
Content-based medical image retrieval(CBMIR)is a technique for retrieving medical images based on automatically derived image features.There are many applications of CBMIR,such as teaching,research,diagnosis and elect...Content-based medical image retrieval(CBMIR)is a technique for retrieving medical images based on automatically derived image features.There are many applications of CBMIR,such as teaching,research,diagnosis and electronic patient records.Several methods are applied to enhance the retrieval performance of CBMIR systems.Developing new and effective similarity measure and features fusion methods are two of the most powerful and effective strategies for improving these systems.This study proposes the relative difference-based similarity measure(RDBSM)for CBMIR.The new measure was first used in the similarity calculation stage for the CBMIR using an unweighted fusion method of traditional color and texture features.Furthermore,the study also proposes a weighted fusion method for medical image features extracted using pre-trained convolutional neural networks(CNNs)models.Our proposed RDBSM has outperformed the standard well-known similarity and distance measures using two popular medical image datasets,Kvasir and PH2,in terms of recall and precision retrieval measures.The effectiveness and quality of our proposed similarity measure are also proved using a significant test and statistical confidence bound.展开更多
The present paper describes the use of online free language resources for translating and expanding queries in CLIR (cross-language information retrieval). In a previous study, we proposed method queries that were t...The present paper describes the use of online free language resources for translating and expanding queries in CLIR (cross-language information retrieval). In a previous study, we proposed method queries that were translated by two machine translation systems on the Language Gridem. The queries were then expanded using an online dictionary to translate compound words or word phrases. A concept base was used to compare back translation words with the original query in order to delete mistranslated words. In order to evaluate the proposed method, we constructed a CLIR system and used the science documents of the NTCIR1 dataset. The proposed method achieved high precision. However~ proper nouns (names of people and places) appear infrequently in science documents. In information retrieval, proper nouns present unique problems. Since proper nouns are usually unknown words, they are difficult to find in monolingual dictionaries, not to mention bilingual dictionaries. Furthermore, the initial query of the user is not always the best description of the desired information. In order to solve this problem, and to create a better query representation, query expansion is often proposed as a solution. Wikipedia was used to translate compound words or word phrases. It was also used to expand queries together with a concept base. The NTCIRI and NTCIR 6 datasets were used to evaluate the proposed method. In the proposed method, the CLIR system was implemented with a high rate of precision. The proposed syst had a higher ranking than the NTCIRI and NTCIR6 participation systems.展开更多
The sparse phase retrieval aims to recover the sparse signal from quadratic measurements. However, the measurements are often affected by outliers and asymmetric distribution noise. This paper introduces a novel metho...The sparse phase retrieval aims to recover the sparse signal from quadratic measurements. However, the measurements are often affected by outliers and asymmetric distribution noise. This paper introduces a novel method that combines the quantile regression and the L<sub>1/2</sub>-regularizer. It is a non-convex, non-smooth, non-Lipschitz optimization problem. We propose an efficient algorithm based on the Alternating Direction Methods of Multiplier (ADMM) to solve the corresponding optimization problem. Numerous numerical experiments show that this method can recover sparse signals with fewer measurements and is robust to dense bounded noise and Laplace noise.展开更多
We propose a simple iterative algorithm based on a temporally movable phase modulation process to retrieve the weak temporal phase of laser pulses. This unambiguous method can be used to achieve a high accuracy and to...We propose a simple iterative algorithm based on a temporally movable phase modulation process to retrieve the weak temporal phase of laser pulses. This unambiguous method can be used to achieve a high accuracy and to simultaneously measure the weak temporal phase and temporal profile of pulses, which are almost transform- limited. A detailed analysis shows that this iterative method has valuable potential applications in the charac- terization of pulses with weak temporal phase.展开更多
Artificial intelligence and computer vision need methods for 2D (two-dimensional) shape retrieval having discrete set of boundary points. A novel method of MHR (Hurwitz-Radon Matrices) is used in shape modeling. P...Artificial intelligence and computer vision need methods for 2D (two-dimensional) shape retrieval having discrete set of boundary points. A novel method of MHR (Hurwitz-Radon Matrices) is used in shape modeling. Proposed method is based on the family of MHR which possess columns composed of orthogonal vectors. 2D curve is retrieved via different functions as probability distribution functions: sine, cosine, tangent, logarithm, exponent, arcsin, arccos, arctan and power function. Created from the family of N-1 MHR and completed with the identical matrix, system of matrices is orthogonal only for dimensions N = 2, 4 or 8. Orthogonality of columns and rows is very significant for stability and high precision of calculations. MHR method is interpolating the function point by point without using any formula of function. Main features of MHR method are: accuracy of curve reconstruction depending on number of nodes and method of choosing nodes, interpolation of L points of the curve is connected with the computational cost of rank O(L), MHR interpolation is not a linear interpolation.展开更多
With the development of big data,all walks of life in society have begun to venture into big data to serve their own enterprises and departments.Big data has been embraced by university digital libraries.The most cumb...With the development of big data,all walks of life in society have begun to venture into big data to serve their own enterprises and departments.Big data has been embraced by university digital libraries.The most cumbersome work for the management of university libraries is document retrieval.This article uses Hadoop algorithm to extract semantic keywords and then calculates semantic similarity based on the literature retrieval keyword calculation process.The fast-matching method is used to determine the weight of each keyword,so as to ensure an efficient and accurate document retrieval in digital libraries,thus completing the design of the document retrieval method for university digital libraries based on Hadoop technology.展开更多
With the incessant propulsion of the Open Door Policy,which is related to the consolidation of international collaborative partnerships,an increasing number of Chinese companies are moving toward cooperating countries...With the incessant propulsion of the Open Door Policy,which is related to the consolidation of international collaborative partnerships,an increasing number of Chinese companies are moving toward cooperating countries to participate in infrastructure construction,employing a win-win strategy in favor of the people and governments of both countries.Among the cooperation domains,our country’s electrical companies have achieved a series of remarkable results in the international Engineering,Procurement,and Construction(EPC)project market with their outstanding business capabilities and technical advantages.Nevertheless,some shortcomings cannot be overlooked,the most notable of which appears to be the impediment associated with engineering translation,which has always been an obsession among translators of Chinese companies.Taking the transmission line project in the Republic of Madagascar as an example,an analysis of French-Chinese translation methods of electrical engineering terminology in the field of the transmission line is carried out.展开更多
文摘The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor localization technologies generally used scene-specific 3D representations or were trained on specific datasets, making it challenging to balance accuracy and cost when applied to new scenes. Addressing this issue, this paper proposed a universal indoor visual localization method based on efficient image retrieval. Initially, a Multi-Layer Perceptron (MLP) was employed to aggregate features from intermediate layers of a convolutional neural network, obtaining a global representation of the image. This approach ensured accurate and rapid retrieval of reference images. Subsequently, a new mechanism using Random Sample Consensus (RANSAC) was designed to resolve relative pose ambiguity caused by the essential matrix decomposition based on the five-point method. Finally, the absolute pose of the queried user image was computed, thereby achieving indoor user pose estimation. The proposed indoor localization method was characterized by its simplicity, flexibility, and excellent cross-scene generalization. Experimental results demonstrated a positioning error of 0.09 m and 2.14° on the 7Scenes dataset, and 0.15 m and 6.37° on the 12Scenes dataset. These results convincingly illustrated the outstanding performance of the proposed indoor localization method.
基金The National Basic Research Program of China(973Program)(No.2004CB318104),the Knowledge Innovation Pro-gram of Chinese Academy of Sciences (No.13CX04).
文摘A concept-based approach is expected to resolve the word sense ambiguities in information retrieval and apply the semantic importance of the concepts, instead of the term frequency, to representing the contents of a document. Consequently, a formalized document framework is proposed. The document framework is used to express the meaning of a document with the concepts which are expressed by high semantic importance. The framework consists of two parts: the "domain" information and the "situation & background" information of a document. A document-extracting algorithm and a two-stage smoothing method are also proposed. The quantification of the similarity between the query and the document framework depends on the smoothing method. The experiments on the TREC6 collection demonstrate the feasibility and effectiveness of the proposed approach in information retrieval tasks. The average recall level precision of the model using the proposed approach is about 10% higher than that of traditional ones.
基金The National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2006BAH02A06)
文摘In order to evaluate the efficiency of the automated storage/retrieval system(AS/RS)accurately,and compare different layouts of the AS/RS using mean travel time,under randomized storage conditions,an exact,geometry-based analytical model is presented.The model can be used to compute the expected single-command and dual-command travel time for a storage/retrieval(S/R)machine which can travel simultaneously horizontally and vertically as it moves along a storage aisle.The rack may be either square in time or non square in time.Additionally,the alternative layouts of the AS/RS and travel-time models are examined.Comparing with setting the I/O point at the left-lower corner of the rack,setting the I/O point at any point at the vertical edge can help enhance the efficiency of the AS/RS.
基金supported by National Natural Science Foundation of China(Grant No. 51175287)National Science and Technology Major Project(Grant No. 2011ZX02403)
文摘Content-based 3D model retrieval is of great help to facilitate the reuse of existing designs and to inspire designers during conceptual design. However, there is still a gap to apply it in industry due to the low time efficiency. This paper presents two new methods with high efficiency to build a Content-based 3D model retrieval system. First, an improvement is made on the "Shape Distribution (D2)" algorithm, and a new algorithm named "Quick D2" is proposed. Four sample 3D mechanical models are used in an experiment to compare the time cost of the two algorithms. The result indicates that the time cost of Quick D2 is much lower than that of D2, while the descriptors extracted by the two algorithms are almost the same. Second, an expandable 3D model repository index method with high performance, namely, RBK index, is presented. On the basis of RBK index, the search space is pruned effectively during the search process, leading to a speed up of the whole system. The factors that influence the values of the key parameters of RBK index are discussed and an experimental method to find the optimal values of the key parameters is given. Finally, "3D Searcher", a content-based 3D model retrieval system is developed. By using the methods proposed, the time cost for the system to respond one query online is reduced by 75% on average. The system has been implemented in a manufacturing enterprise, and practical query examples during a case of the automobile rear axle design are also shown. The research method presented shows a new research perspective and can effectively improve the content-based 3D model retrieval efficiency.
文摘A hybrid model that is based on the Combination of keywords and concept was put forward. The hybrid model is built on vector space model and probabilistic reasoning network. It not only can exert the advantages of keywords retrieval and concept retrieval but also can compensate for their shortcomings. Their parameters can be adjusted according to different usage in order to accept the best information retrieval result, and it has been proved by our experiments.
文摘It is common knowledge that continental retrieval especially for Qinghai-Xizang Plateau has not been solved todate. In order to explore applicable inverse model and method for continent including the plateau, in this study authors use an improved simultaneous physical retrieval method hereafter referred to as the ISPRM, for computing meteorological parameters from NOAA-10 satellite TOVS data. The retrieval results verified by nearby radiosondesshow that the ISPRM is more applicable for the continental plateau.
基金The National Key Research and Development Program under contract Nos 2016YFC1402703 and 2018YFC1407100
文摘Conventional retrieval and neural network methods are used simultaneously to retrieve sea surface wind speed(SSWS)from HH-polarized Sentinel-1(S1)SAR images.The Polarization Ratio(PR)models combined with the CMOD5.N Geophysical Model Function(GMF)is used for SSWS retrieval from the HH-polarized SAR data.We compared different PR models developed based on previous C-band SAR data in HH-polarization for their applications to the S1 SAR data.The recently proposed CMODH,i.e.,retrieving SSWS directly from the HHpolarized S1 data is also validated.The results indicate that the CMODH model performs better than results achieved using the PR models.We proposed a neural network method based on the backward propagation(BP)neural network to retrieve SSWS from the S1 HH-polarized data.The SSWS retrieved using the BP neural network model agrees better with the buoy measurements and ASCAT dataset than the results achieved using the conventional methods.Compared to the buoy measurements,the bias,root mean square error(RMSE)and scatter index(SI)of wind speed retrieved by the BP neural network model are 0.10 m/s,1.38 m/s and 19.85%,respectively,while compared to the ASCAT dataset the three parameters of training set are–0.01 m/s,1.33 m/s and 15.10%,respectively.It is suggested that the BP neural network model has a potential application in retrieving SSWS from Sentinel-1 images acquired at HH-polarization.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 51075083)
文摘In order to improve the accuracy and efficiency of 3D model retrieval,the method based on affinity propagation clustering algorithm is proposed. Firstly,projection ray-based method is proposed to improve the feature extraction efficiency of 3D models. Based on the relationship between model and its projection,the intersection in 3D space is transformed into intersection in 2D space,which reduces the number of intersection and improves the efficiency of the extraction algorithm. In feature extraction,multi-layer spheres method is analyzed. The two-layer spheres method makes the feature vector more accurate and improves retrieval precision. Secondly,Semi-supervised Affinity Propagation ( S-AP) clustering is utilized because it can be applied to different cluster structures. The S-AP algorithm is adopted to find the center models and then the center model collection is built. During retrieval process,the collection is utilized to classify the query model into corresponding model base and then the most similar model is retrieved in the model base. Finally,75 sample models from Princeton library are selected to do the experiment and then 36 models are used for retrieval test. The results validate that the proposed method outperforms the original method and the retrieval precision and recall ratios are improved effectively.
基金Supported by National Natural Science Foundation of China(41805080)Natural Science Foundation of Anhui Province,China(1708085QD89)+1 种基金Key Research and Development Program Projects of Anhui Province,China(201904a07020099)Open Foundation Project Shenyang Institute of Atmospheric Environment,China Meteorological Administration(2016SYIAE14)
文摘In this paper,the application of an algorithm for precipitation retrieval based on Himawari-8 (H8) satellite infrared data is studied.Based on GPM precipitation data and H8 Infrared spectrum channel brightness temperature data,corresponding "precipitation field dictionary" and "channel brightness temperature dictionary" are formed.The retrieval of precipitation field based on brightness temperature data is studied through the classification rule of k-nearest neighbor domain (KNN) and regularization constraint.Firstly,the corresponding "dictionary" is constructed according to the training sample database of the matched GPM precipitation data and H8 brightness temperature data.Secondly,according to the fact that precipitation characteristics in small organizations in different storm environments are often repeated,KNN is used to identify the spectral brightness temperature signal of "precipitation" and "non-precipitation" based on "the dictionary".Finally,the precipitation field retrieval is carried out in the precipitation signal "subspace" based on the regular term constraint method.In the process of retrieval,the contribution rate of brightness temperature retrieval of different channels was determined by Bayesian model averaging (BMA) model.The preliminary experimental results based on the "quantitative" evaluation indexes show that the precipitation of H8 retrieval has a good correlation with the GPM truth value,with a small error and similar structure.
文摘A variational method is developed to retrieve winds in the first step and then thermodynamic fields in the second step from Doppler radar observations. In the first step, wind fields are retrieved at two time levels: the beginning and ending times of the data assimilation period, simultaneously from two successive volume scans by using the weak form constraints provided by the mass continuity and vorticity equations. As the retrieved wind fields are expressed by Legendre polynomial expansions at the beginning and ending times, the time tendency term in the vorticity equation can be conveniently formulated, and the retrieved winds can be compared with the radar observed radial winds in the cost function at the precise time and position of each radar beam. In the second step, the perturbation pressure and temperature fields at the middle time are then derived from the retrieved wind fields and the velocity time tendency by using the weak form constraints provided by the three momentum equations. The merits of the new method are demonstrated by numerical experiments with simulated radar observations and compared with the traditional least squares methods which consider neither the precise observation times and positions nor the velocity time tendency. The new method is also applied to real radar data for a heavy rainfall event during the 2001 Meiyu season in China.
基金supported by the National Natural Science Foundation of China (Grant No. 40775023)
文摘Scatterometer is an instrument which provides all-day and large-scale wind field information, and its application especially to wind retrieval always attracts meteorologists. Certain reasons cause large direction error, so it is important to find where the error mainly comes. Does it mainly result from the background field, the normalized radar cross-section (NRCS) or the method of wind retrieval? It is valuable to research. First, depending on SDP2.0, the simulated 'true' NRCS is calculated from the simulated 'true' wind through the geophysical mode] function NSCAT2. The simulated background field is configured by adding a noise to the simulated 'true' wind with the non-divergence constraint. Also, the simulated 'measured' NRCS is formed by adding a noise to the simulated 'true' NRCS. Then, the sensitivity experiments are taken, and the new method of regularization is used to improve the ambiguity removal with simulation experiments. The results show that the accuracy of wind retrieval is more sensitive to the noise in the background than in the measured NRCS; compared with the two-dimensional variational (2DVAR) ambiguity removal method, the accuracy of wind retrieval can be improved with the new method of Tikhonov regularization through choosing an appropriate regularization parameter, especially for the case of large error in the background. The work will provide important information and a new method for the wind retrieval with real data.
基金Key Fostering Project of National Space Science Center,Chinese Academy of Sciences(Y62112f37s)National 863 Project of China(2015AA8126027)
文摘For Microwave Humidity and Temperature sounder(MWHTS) measurements over the ocean, a cloud filtering method is presented to filter out cloud-and precipitation-affected observations by analyzing the sensitivity of the simulated brightness temperatures of MWHTS to cloud liquid water, and using the root mean square error(RMSE)between observation and simulation in clear sky as a reference standard. The atmospheric temperature and humidity profiles are retrieved using MWHTS measurements with and without filtering by multiple linear regression(MLR),artificial neural networks(ANN) and one-dimensional variational(1DVAR) retrieval methods, respectively, and the effects of the filtering method on the retrieval accuracies are analyzed. The numerical results show that the filtering method can improve the retrieval accuracies of the MLR and the 1DVAR retrieval methods, but have little influence on that of the ANN. In addition, the dependencies of the retrieval methods upon the testing samples of brightness temperature are studied, and the results show that the 1DVAR retrieval method has great stability due to that the testing samples have great impact on the retrieval accuracies of the MLR and the ANN, but have little impact on that of the 1DVAR.
基金the 973 Program (Grant No. 2004CB418305)the National Natural Science Foundation of China(Grant No. 40575049).
文摘A three-dimensional variational method is proposed to simultaneously retrieve the 3-D atmospheric temperature and moisture profiles from satellite radiance measurements. To include both vertical structure and the horizontal patterns of the atmospheric temperature and moisture, an EOF technique is used to decompose the temperature and moisture field in a 3-D space. A number of numerical simulations are conducted and they demonstrate that the 3-D method is less sensitive to the observation errors compared to the 1-D method. When the observation error is more than 2.0 K, to get the best results, the truncation number for the EOF's expansion have to be restricted to 2 in the 1-D method, while it can be set as large as 40 in a 3-D method. This results in the truncation error being reduced and the retrieval accuracy being improved in the 3-D method. Compared to the 1-D method, the rms errors of the 3-D method are reduced by 48% and 36% for the temperature and moisture retrievals, respectively. Using the real satellite measured brightness temperatures at 0557 UTC 31 July 2002, the temperature and moisture profiles are retrieved over a region (20°-45°N, 100°- 125°E) and compared with 37 collocated radiosonde observations. The results show that the retrieval accuracy with a 3-D method is significantly higher than those with the 1-D method.
基金funded by the Deanship of Scientific Research (DSR)at King Abdulaziz University,Jeddah,Saudi Arabia,Under Grant No. (G:146-830-1441).
文摘Content-based medical image retrieval(CBMIR)is a technique for retrieving medical images based on automatically derived image features.There are many applications of CBMIR,such as teaching,research,diagnosis and electronic patient records.Several methods are applied to enhance the retrieval performance of CBMIR systems.Developing new and effective similarity measure and features fusion methods are two of the most powerful and effective strategies for improving these systems.This study proposes the relative difference-based similarity measure(RDBSM)for CBMIR.The new measure was first used in the similarity calculation stage for the CBMIR using an unweighted fusion method of traditional color and texture features.Furthermore,the study also proposes a weighted fusion method for medical image features extracted using pre-trained convolutional neural networks(CNNs)models.Our proposed RDBSM has outperformed the standard well-known similarity and distance measures using two popular medical image datasets,Kvasir and PH2,in terms of recall and precision retrieval measures.The effectiveness and quality of our proposed similarity measure are also proved using a significant test and statistical confidence bound.
文摘The present paper describes the use of online free language resources for translating and expanding queries in CLIR (cross-language information retrieval). In a previous study, we proposed method queries that were translated by two machine translation systems on the Language Gridem. The queries were then expanded using an online dictionary to translate compound words or word phrases. A concept base was used to compare back translation words with the original query in order to delete mistranslated words. In order to evaluate the proposed method, we constructed a CLIR system and used the science documents of the NTCIR1 dataset. The proposed method achieved high precision. However~ proper nouns (names of people and places) appear infrequently in science documents. In information retrieval, proper nouns present unique problems. Since proper nouns are usually unknown words, they are difficult to find in monolingual dictionaries, not to mention bilingual dictionaries. Furthermore, the initial query of the user is not always the best description of the desired information. In order to solve this problem, and to create a better query representation, query expansion is often proposed as a solution. Wikipedia was used to translate compound words or word phrases. It was also used to expand queries together with a concept base. The NTCIRI and NTCIR 6 datasets were used to evaluate the proposed method. In the proposed method, the CLIR system was implemented with a high rate of precision. The proposed syst had a higher ranking than the NTCIRI and NTCIR6 participation systems.
文摘The sparse phase retrieval aims to recover the sparse signal from quadratic measurements. However, the measurements are often affected by outliers and asymmetric distribution noise. This paper introduces a novel method that combines the quantile regression and the L<sub>1/2</sub>-regularizer. It is a non-convex, non-smooth, non-Lipschitz optimization problem. We propose an efficient algorithm based on the Alternating Direction Methods of Multiplier (ADMM) to solve the corresponding optimization problem. Numerous numerical experiments show that this method can recover sparse signals with fewer measurements and is robust to dense bounded noise and Laplace noise.
基金Supported by the National Natural Science Foundation of China under Grant No 61205103
文摘We propose a simple iterative algorithm based on a temporally movable phase modulation process to retrieve the weak temporal phase of laser pulses. This unambiguous method can be used to achieve a high accuracy and to simultaneously measure the weak temporal phase and temporal profile of pulses, which are almost transform- limited. A detailed analysis shows that this iterative method has valuable potential applications in the charac- terization of pulses with weak temporal phase.
文摘Artificial intelligence and computer vision need methods for 2D (two-dimensional) shape retrieval having discrete set of boundary points. A novel method of MHR (Hurwitz-Radon Matrices) is used in shape modeling. Proposed method is based on the family of MHR which possess columns composed of orthogonal vectors. 2D curve is retrieved via different functions as probability distribution functions: sine, cosine, tangent, logarithm, exponent, arcsin, arccos, arctan and power function. Created from the family of N-1 MHR and completed with the identical matrix, system of matrices is orthogonal only for dimensions N = 2, 4 or 8. Orthogonality of columns and rows is very significant for stability and high precision of calculations. MHR method is interpolating the function point by point without using any formula of function. Main features of MHR method are: accuracy of curve reconstruction depending on number of nodes and method of choosing nodes, interpolation of L points of the curve is connected with the computational cost of rank O(L), MHR interpolation is not a linear interpolation.
文摘With the development of big data,all walks of life in society have begun to venture into big data to serve their own enterprises and departments.Big data has been embraced by university digital libraries.The most cumbersome work for the management of university libraries is document retrieval.This article uses Hadoop algorithm to extract semantic keywords and then calculates semantic similarity based on the literature retrieval keyword calculation process.The fast-matching method is used to determine the weight of each keyword,so as to ensure an efficient and accurate document retrieval in digital libraries,thus completing the design of the document retrieval method for university digital libraries based on Hadoop technology.
文摘With the incessant propulsion of the Open Door Policy,which is related to the consolidation of international collaborative partnerships,an increasing number of Chinese companies are moving toward cooperating countries to participate in infrastructure construction,employing a win-win strategy in favor of the people and governments of both countries.Among the cooperation domains,our country’s electrical companies have achieved a series of remarkable results in the international Engineering,Procurement,and Construction(EPC)project market with their outstanding business capabilities and technical advantages.Nevertheless,some shortcomings cannot be overlooked,the most notable of which appears to be the impediment associated with engineering translation,which has always been an obsession among translators of Chinese companies.Taking the transmission line project in the Republic of Madagascar as an example,an analysis of French-Chinese translation methods of electrical engineering terminology in the field of the transmission line is carried out.