This paper established a geophysical retrieval algorithm for sea surface wind vector, sea surface temperature, columnar atmospheric water vapor, and columnar cloud liquid water from WindSat, using the measured brightn...This paper established a geophysical retrieval algorithm for sea surface wind vector, sea surface temperature, columnar atmospheric water vapor, and columnar cloud liquid water from WindSat, using the measured brightness temperatures and a matchup database. To retrieve the wind vector, a chaotic particle swarm approach was used to determine a set of possible wind vector solutions which minimize the difference between the forward model and the WindSat observations. An adjusted circular median filtering function was adopted to remove wind direction ambiguity. The validation of the wind speed, wind direction, sea surface temperature, columnar atmospheric water vapor, and columnar liquid cloud water indicates that this algorithm is feasible and reasonable and can be used to retrieve these atmospheric and oceanic parameters. Compared with moored buoy data, the RMS errors for wind speed and sea surface temperature were 0.92 m s^(-1) and 0.88℃, respectively. The RMS errors for columnar atmospheric water vapor and columnar liquid cloud water were 0.62 mm and 0.01 mm, respectively, compared with F17 SSMIS results. In addition, monthly average results indicated that these parameters are in good agreement with AMSR-E results. Wind direction retrieval was studied under various wind speed conditions and validated by comparing to the Quik SCAT measurements, and the RMS error was 13.3?. This paper offers a new approach to the study of ocean wind vector retrieval using a polarimetric microwave radiometer.展开更多
An android-based lace image retrieval system based on content-based image retrieval (CBIR) technique is presented. This paper applies shape and texture features of lace image in our system and proposes a hierarchical ...An android-based lace image retrieval system based on content-based image retrieval (CBIR) technique is presented. This paper applies shape and texture features of lace image in our system and proposes a hierarchical multifeature scheme to facilitate coarseto-fine matching for efficient lace image retrieval in a large database. Experimental results demonstrate the feasibility and effectiveness of the proposed system meet the requirements of realtime.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.41205013 and 41105012)
文摘This paper established a geophysical retrieval algorithm for sea surface wind vector, sea surface temperature, columnar atmospheric water vapor, and columnar cloud liquid water from WindSat, using the measured brightness temperatures and a matchup database. To retrieve the wind vector, a chaotic particle swarm approach was used to determine a set of possible wind vector solutions which minimize the difference between the forward model and the WindSat observations. An adjusted circular median filtering function was adopted to remove wind direction ambiguity. The validation of the wind speed, wind direction, sea surface temperature, columnar atmospheric water vapor, and columnar liquid cloud water indicates that this algorithm is feasible and reasonable and can be used to retrieve these atmospheric and oceanic parameters. Compared with moored buoy data, the RMS errors for wind speed and sea surface temperature were 0.92 m s^(-1) and 0.88℃, respectively. The RMS errors for columnar atmospheric water vapor and columnar liquid cloud water were 0.62 mm and 0.01 mm, respectively, compared with F17 SSMIS results. In addition, monthly average results indicated that these parameters are in good agreement with AMSR-E results. Wind direction retrieval was studied under various wind speed conditions and validated by comparing to the Quik SCAT measurements, and the RMS error was 13.3?. This paper offers a new approach to the study of ocean wind vector retrieval using a polarimetric microwave radiometer.
基金the Innovation Fund Projects of Cooperation among Industries,Universities & Research Institutes of Jiangsu Province,China(Nos.BY2015019-11,BY2015019-20)the Fundamental Research Funds for the Central Universities,China(Nos.JUSRP51404A,JUSRP211A38)Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China(No.[2014].37)
文摘An android-based lace image retrieval system based on content-based image retrieval (CBIR) technique is presented. This paper applies shape and texture features of lace image in our system and proposes a hierarchical multifeature scheme to facilitate coarseto-fine matching for efficient lace image retrieval in a large database. Experimental results demonstrate the feasibility and effectiveness of the proposed system meet the requirements of realtime.