期刊文献+
共找到962篇文章
< 1 2 49 >
每页显示 20 50 100
Natural Language Processing with Optimal Deep Learning-Enabled Intelligent Image Captioning System
1
作者 Radwa Marzouk Eatedal Alabdulkreem +5 位作者 Mohamed KNour Mesfer Al Duhayyim Mahmoud Othman Abu Sarwar Zamani Ishfaq Yaseen Abdelwahed Motwakel 《Computers, Materials & Continua》 SCIE EI 2023年第2期4435-4451,共17页
The recent developments in Multimedia Internet of Things(MIoT)devices,empowered with Natural Language Processing(NLP)model,seem to be a promising future of smart devices.It plays an important role in industrial models... The recent developments in Multimedia Internet of Things(MIoT)devices,empowered with Natural Language Processing(NLP)model,seem to be a promising future of smart devices.It plays an important role in industrial models such as speech understanding,emotion detection,home automation,and so on.If an image needs to be captioned,then the objects in that image,its actions and connections,and any silent feature that remains under-projected or missing from the images should be identified.The aim of the image captioning process is to generate a caption for image.In next step,the image should be provided with one of the most significant and detailed descriptions that is syntactically as well as semantically correct.In this scenario,computer vision model is used to identify the objects and NLP approaches are followed to describe the image.The current study develops aNatural Language Processing with Optimal Deep Learning Enabled Intelligent Image Captioning System(NLPODL-IICS).The aim of the presented NLPODL-IICS model is to produce a proper description for input image.To attain this,the proposed NLPODL-IICS follows two stages such as encoding and decoding processes.Initially,at the encoding side,the proposed NLPODL-IICS model makes use of Hunger Games Search(HGS)with Neural Search Architecture Network(NASNet)model.This model represents the input data appropriately by inserting it into a predefined length vector.Besides,during decoding phase,Chimp Optimization Algorithm(COA)with deeper Long Short Term Memory(LSTM)approach is followed to concatenate the description sentences 4436 CMC,2023,vol.74,no.2 produced by the method.The application of HGS and COA algorithms helps in accomplishing proper parameter tuning for NASNet and LSTM models respectively.The proposed NLPODL-IICS model was experimentally validated with the help of two benchmark datasets.Awidespread comparative analysis confirmed the superior performance of NLPODL-IICS model over other models. 展开更多
关键词 Natural language processing information retrieval image captioning deep learning metaheuristics
下载PDF
Similarity matching method of power distribution system operating data based on neural information retrieval
2
作者 Kai Xiao Daoxing Li +2 位作者 Pengtian Guo Xiaohui Wang Yong Chen 《Global Energy Interconnection》 EI CAS CSCD 2023年第1期15-25,共11页
Operation control of power systems has become challenging with an increase in the scale and complexity of power distribution systems and extensive access to renewable energy.Therefore,improvement of the ability of dat... Operation control of power systems has become challenging with an increase in the scale and complexity of power distribution systems and extensive access to renewable energy.Therefore,improvement of the ability of data-driven operation management,intelligent analysis,and mining is urgently required.To investigate and explore similar regularities of the historical operating section of the power distribution system and assist the power grid in obtaining high-value historical operation,maintenance experience,and knowledge by rule and line,a neural information retrieval model with an attention mechanism is proposed based on graph data computing technology.Based on the processing flow of the operating data of the power distribution system,a technical framework of neural information retrieval is established.Combined with the natural graph characteristics of the power distribution system,a unified graph data structure and a data fusion method of data access,data complement,and multi-source data are constructed.Further,a graph node feature-embedding representation learning algorithm and a neural information retrieval algorithm model are constructed.The neural information retrieval algorithm model is trained and tested using the generated graph node feature representation vector set.The model is verified on the operating section of the power distribution system of a provincial grid area.The results show that the proposed method demonstrates high accuracy in the similarity matching of historical operation characteristics and effectively supports intelligent fault diagnosis and elimination in power distribution systems. 展开更多
关键词 Neural information retrieval Power distribution Graph data Operating section Similarity matching
下载PDF
Asymmetric Consortium Blockchain and Homomorphically Polynomial-Based PIR for Secured Smart Parking Systems
3
作者 T.Haritha A.Anitha 《Computers, Materials & Continua》 SCIE EI 2023年第5期3923-3939,共17页
In crowded cities,searching for the availability of parking lots is a herculean task as it results in the wastage of drivers’time,increases air pollution,and traffic congestion.Smart parking systems facilitate the dr... In crowded cities,searching for the availability of parking lots is a herculean task as it results in the wastage of drivers’time,increases air pollution,and traffic congestion.Smart parking systems facilitate the drivers to determine the information about the parking lot in real time and book them depending on the requirement.But the existing smart parking systems necessitate the drivers to reveal their sensitive information that includes their mobile number,personal identity,and desired destination.This disclosure of sensitive information makes the existing centralized smart parking systems more vulnerable to service providers’security breaches,single points of failure,and bottlenecks.In this paper,an Improved Asymmetric Consortium Blockchain and Homomorphically Computing Univariate Polynomial-based private information retrieval(IACB-HCUPPIR)scheme is proposed to ensure parking lots’availability with transparency security in a privacy-preserving smart parking system.In specific,an improved Asymmetric Consortium Blockchain is used for achieving secure transactions between different parties interacting in the smart parking environment.It further adopted the method of Homomorphically Computing Univariate Polynomial-based private information retrieval(HCUPPIR)scheme for preserving the location privacy of drivers.The results of IACB-HCUPPIR confirmed better results in terms of minimized computation and communication overload with throughput,latency,and response time with maximized drivers’privacy preservation.Moreover,the proposed fully homomorphic algorithm(FHE)was compared against partial-homomorphic encryption(PHE)and technique without encryption and found that the proposed model has quick communication in allocating the parking slots starting with 24.3 s,whereas PHE starts allocating from 24.7 s and the technique without encryption starts at 27.4 s.Thus,we ensure the proposed model performs well in allocating parking slots with less time and high security with privacy preservation. 展开更多
关键词 Smart parking asymmetric consortium blockchain privacy preservation homomorphic encryption private information retrieval
下载PDF
Multi-mode Multi-frequency GNSS-IR Combination System for Sea Level Retrieval
4
作者 Wenyue CHE Xiaolei WANG +1 位作者 Xiufeng HE Jin LIU 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第2期32-39,共8页
With the development of Global Navigation Satellite Systems(GNSS),geodetic GNSS receivers have been utilized to monitor sea levels using GNSS-Interferometry Reflectometry(GNSS-IR)technology.The multi-mode,multi-freque... With the development of Global Navigation Satellite Systems(GNSS),geodetic GNSS receivers have been utilized to monitor sea levels using GNSS-Interferometry Reflectometry(GNSS-IR)technology.The multi-mode,multi-frequency signals of GPS,GLONASS,Galileo,and Beidou can be used for GNSS-IR sea level retrieval,but combining these retrievals remains problematic.To address this issue,a GNSS-IR sea level retrieval combination system has been developed,which begins by analyzing error sources in GNSS-IR sea level retrieval and establishing and solving the GNSS-IR retrieval equation.This paper focuses on two key points:time window selection and equation stability.The stability of the retrieval combination equations is determined by the condition number of the coefficient matrix within the time window.The impact of ill-conditioned coefficient matrices on the retrieval results is demonstrated using an extreme case of SNR data with only ascending or descending trajectories.After determining the time window and removing ill-conditioned equations,the multi-mode,multi-frequency GNSS-IR retrieval is performed.Results from three International GNSS Service(IGS)stations show that the combination method produces high-precision,high-resolution,and high-reliability sea level retrieval combination sequences. 展开更多
关键词 GNSS-IR sea level retrieval multi-mode multi-frequency combination equation stability
下载PDF
News Modeling and Retrieving Information: Data-Driven Approach
5
作者 Elias Hossain Abdullah Alshahrani Wahidur Rahman 《Intelligent Automation & Soft Computing》 2023年第11期109-123,共15页
This paper aims to develop Machine Learning algorithms to classify electronic articles related to this phenomenon by retrieving information and topic modelling.The Methodology of this study is categorized into three p... This paper aims to develop Machine Learning algorithms to classify electronic articles related to this phenomenon by retrieving information and topic modelling.The Methodology of this study is categorized into three phases:the Text Classification Approach(TCA),the Proposed Algorithms Interpretation(PAI),andfinally,Information Retrieval Approach(IRA).The TCA reflects the text preprocessing pipeline called a clean corpus.The Global Vec-tors for Word Representation(Glove)pre-trained model,FastText,Term Frequency-Inverse Document Fre-quency(TF-IDF),and Bag-of-Words(BOW)for extracting the features have been interpreted in this research.The PAI manifests the Bidirectional Long Short-Term Memory(Bi-LSTM)and Convolutional Neural Network(CNN)to classify the COVID-19 news.Again,the IRA explains the mathematical interpretation of Latent Dirich-let Allocation(LDA),obtained for modelling the topic of Information Retrieval(IR).In this study,99%accuracy was obtained by performing K-fold cross-validation on Bi-LSTM with Glove.A comparative analysis between Deep Learning and Machine Learning based on feature extraction and computational complexity exploration has been performed in this research.Furthermore,some text analyses and the most influential aspects of each document have been explored in this study.We have utilized Bidirectional Encoder Representations from Trans-formers(BERT)as a Deep Learning mechanism in our model training,but the result has not been uncovered satisfactory.However,the proposed system can be adjustable in the real-time news classification of COVID-19. 展开更多
关键词 COVID-19 news retrieving DATA-DRIVEN machine learning BERT topic modelling
下载PDF
The Preliminary Design and Implement of Plant Digital Information Retrieval System 被引量:3
6
作者 樊永军 闫伟 +2 位作者 王黎元 杨秀丽 刘学威 《Agricultural Science & Technology》 CAS 2011年第5期751-755,共5页
[Objective] The aim was to set up a plant digital information retrieval system.[Method] Plant digital information retrieval system was designed by combining with Microsoft Visual Basic 6.0 Enterprise Edition database ... [Objective] The aim was to set up a plant digital information retrieval system.[Method] Plant digital information retrieval system was designed by combining with Microsoft Visual Basic 6.0 Enterprise Edition database management system and Structure Query Language.[Result] The system realized electronic management and retrieval of local plant information.The key words of retrieval included family,genus,formal name,Chinese name,Latin,morphological characteristics,habitat,collection people,collection places,and protect class and so on.[Conclusion] It provided reference for these problems of species identification and digital management of herbarium. 展开更多
关键词 Plant digital information retrieval system DATABASE Design and implement
下载PDF
Variation in the surface heat flux on the north and south slopes of Mount Qomolangma 被引量:1
7
作者 Yonghao Jiang Maoshan Li +4 位作者 Yuchen Liu Ting Wang Pei Xu Yaoming Ma Fanglin Sun 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期28-33,共6页
The distinctive conditions present on the north and south slopes of Mount Qomolangma,along with the intricate variations in the underlying surfaces,result in notable variations in the surface energy flux patterns of t... The distinctive conditions present on the north and south slopes of Mount Qomolangma,along with the intricate variations in the underlying surfaces,result in notable variations in the surface energy flux patterns of the two slopes.In this paper,data from TESEBS(Topographical Enhanced Surface Energy Balance System),remote sensing data from eight cloud-free scenarios,and observational data from nine stations are utilized to examine the fluctuations in the surface heat flux on both slopes.The inclusion of MCD43A3 satellite data enhances the surface albedo,contributing to more accurate simulation outcomes.The model results are validated using observational data.The RMSEs of the net radiation,ground heat,sensible heat,and latent heat flux are 40.73,17.09,33.26,and 30.91 W m^(−2),respectively.The net radiation flux is greater on the south slope and exhibits a rapid decline from summer to autumn.Due to the influence of the monsoon,on the north slope,the maximum sensible heat flux occurs in the pre-monsoon period in summer and the maximum latent heat flux occurs during the monsoon.The south slope experiences the highest latent heat flux in summer.The dominant flux on the north slope is sensible heat,while it is latent heat on the south slope.The seasonal variations in the ground heat flux are more pronounced on the south slope than on the north slope.Except in summer,the ground heat flux on the north slope surpasses that on the south slope. 展开更多
关键词 Mount Qomolangma TESEBS model Remote sensing retrieval Surface heat fluxes
下载PDF
Agriculture Information Retrieval System Based on Comprehensive Information Theory 被引量:7
8
作者 吴启明 《Agricultural Science & Technology》 CAS 2010年第2期143-145,共3页
Through analyzing syntactic,semantic,pragmatic information,the retrieval system ACIS based on comprehensive information was established,which could achieve personalized information exaction to guide user s information... Through analyzing syntactic,semantic,pragmatic information,the retrieval system ACIS based on comprehensive information was established,which could achieve personalized information exaction to guide user s information retrieval. 展开更多
关键词 Comprehensive information theory AGRICULTURE Information retrieval system
下载PDF
Sequencing method for dual-shuttle flow-rack automated storage and retrieval systems 被引量:1
9
作者 陈竹西 李小平 《Journal of Southeast University(English Edition)》 EI CAS 2015年第1期31-37,共7页
The dual-retrieval (DR) operation sequencing problem in the flow-rack automated storage and retrieval system (AS/RS) is modeled as an assignment problem since it is equivalent to pairing outgoing unit-loads for ea... The dual-retrieval (DR) operation sequencing problem in the flow-rack automated storage and retrieval system (AS/RS) is modeled as an assignment problem since it is equivalent to pairing outgoing unit-loads for each DR operation. A recursion symmetry Hungarian method (RSHM), modified from the Hungarian method, is proposed for generating a DR operation sequence with minimal total travel time, in which symmetry marking is introduced to ensure a feasible solution and recursion is adopted to break the endless loop caused by the symmetry marking. Simulation experiments are conducted to evaluate the cost effectiveness and the performance of the proposed method. Experimental results illustrate that compared to the single-shuttle machine, the dual-shuttle machine can reduce more than 40% of the total travel time of retrieval operations, and the RSHM saves about 5% to 10% of the total travel time of retrieval operations compared to the greedy-based heuristic. 展开更多
关键词 dual-shuttle SEQUENCING flow rack automatedstorage and retrieval system (AS/RS)
下载PDF
A Deep-Learning and Transfer-Learning Hybrid Aerosol Retrieval Algorithm for FY4-AGRI:Development and Verification over Asia
10
作者 Disong Fu Hongrong Shi +9 位作者 Christian AGueymard Dazhi Yang Yu Zheng Huizheng Che Xuehua Fan Xinlei Han Lin Gao Jianchun Bian Minzheng Duan Xiangao Xia 《Engineering》 SCIE EI CAS CSCD 2024年第7期164-174,共11页
The Advanced Geosynchronous Radiation Imager(AGRI)is a mission-critical instrument for the Fengyun series of satellites.AGRI acquires full-disk images every 15 min and views East Asia every 5 min through 14 spectral b... The Advanced Geosynchronous Radiation Imager(AGRI)is a mission-critical instrument for the Fengyun series of satellites.AGRI acquires full-disk images every 15 min and views East Asia every 5 min through 14 spectral bands,enabling the detection of highly variable aerosol optical depth(AOD).Quantitative retrieval of AOD has hitherto been challenging,especially over land.In this study,an AOD retrieval algorithm is proposed that combines deep learning and transfer learning.The algorithm uses core concepts from both the Dark Target(DT)and Deep Blue(DB)algorithms to select features for the machinelearning(ML)algorithm,allowing for AOD retrieval at 550 nm over both dark and bright surfaces.The algorithm consists of two steps:①A baseline deep neural network(DNN)with skip connections is developed using 10 min Advanced Himawari Imager(AHI)AODs as the target variable,and②sunphotometer AODs from 89 ground-based stations are used to fine-tune the DNN parameters.Out-of-station validation shows that the retrieved AOD attains high accuracy,characterized by a coefficient of determination(R2)of 0.70,a mean bias error(MBE)of 0.03,and a percentage of data within the expected error(EE)of 70.7%.A sensitivity study reveals that the top-of-atmosphere reflectance at 650 and 470 nm,as well as the surface reflectance at 650 nm,are the two largest sources of uncertainty impacting the retrieval.In a case study of monitoring an extreme aerosol event,the AGRI AOD is found to be able to capture the detailed temporal evolution of the event.This work demonstrates the superiority of the transfer-learning technique in satellite AOD retrievals and the applicability of the retrieved AGRI AOD in monitoring extreme pollution events. 展开更多
关键词 Aerosol optical depth Retrieval algorithm Deep learning Transfer learning Advanced Geosynchronous Radiation IMAGER
下载PDF
Quantifying the chemical composition of weathering products of Hainan basalts with reflectance spectroscopy and its implications for Mars
11
作者 Xing Wu JiaCheng Liu +5 位作者 WeiChao Sun Yang Liu Joseph Michalski Wei Tan XiaoRong Qin YongLiao Zou 《Earth and Planetary Physics》 EI CAS CSCD 2024年第6期854-867,共14页
With the development of the hyperspectral remote sensing technique,extensive chemical weathering profiles have been identified on Mars.These weathering sequences,formed through precipitation-driven leaching processes,... With the development of the hyperspectral remote sensing technique,extensive chemical weathering profiles have been identified on Mars.These weathering sequences,formed through precipitation-driven leaching processes,can reflect the paleoenvironments and paleoclimates during pedogenic processes.The specific composition and stratigraphic profiles mirror the mineralogical and chemical trends observed in weathered basalts on Hainan Island in south China.In this study,we investigated the laboratory reflectance spectra of a 53-m-long drilling core of a thick basaltic weathering profile collected from Hainan Island.We established a quantitative spectral model by combining the genetic algorithm and partial least squares regression(GA-PLSR)to predict the chemical properties(SiO2,Al2O3,Fe2O3)and index of laterization(IOL).The entire sample set was divided into a calibration set of 25 samples and a validation set of 12 samples.Specifically,the GA was used to select the spectral subsets for each composition,which were then input into the PLSR model to derive the chemical concentration.The coefficient of determination(R2)values on the validation set for SiO2,Al2O3,Fe2O3,and the IOL were greater than 0.9.In addition,the effects of various spectral preprocessing techniques on the model accuracy were evaluated.We found that the spectral derivative treatment boosted the prediction accuracy of the GA-PLSR model.The improvement achieved with the second derivative was more pronounced than when using the first derivative.The quantitative model developed in this work has the potential to estimate the contents of similar weathering basalt products,and thus infer the degree of alteration and provide insights into paleoclimatic conditions.Moreover,the informative bands selected by the GA can serve as a guideline for designing spectral channels for the next generation of spectrometers. 展开更多
关键词 reflectance spectroscopy weathered basalts terrestrial analog quantitative retrieval MARS
下载PDF
Construction of apricot variety search engine based on deep learning
12
作者 Chen Chen Lin Wang +8 位作者 Huimin Liu Jing Liu Wanyu Xu Mengzhen Huang Ningning Gou Chu Wang Haikun Bai Gengjie Jia Tana Wuyun 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期387-397,共11页
Apricot has a long history of cultivation and has many varieties and types. The traditional variety identification methods are timeconsuming and labor-consuming, posing grand challenges to apricot resource management.... Apricot has a long history of cultivation and has many varieties and types. The traditional variety identification methods are timeconsuming and labor-consuming, posing grand challenges to apricot resource management. Tool development in this regard will help researchers quickly identify variety information. This study photographed apricot fruits outdoors and indoors and constructed a dataset that can precisely classify the fruits using a U-net model (F-score:99%), which helps to obtain the fruit's size, shape, and color features. Meanwhile, a variety search engine was constructed, which can search and identify variety from the database according to the above features. Besides, a mobile and web application (ApricotView) was developed, and the construction mode can be also applied to other varieties of fruit trees.Additionally, we have collected four difficult-to-identify seed datasets and used the VGG16 model for training, with an accuracy of 97%, which provided an important basis for ApricotView. To address the difficulties in data collection bottlenecking apricot phenomics research, we developed the first apricot database platform of its kind (ApricotDIAP, http://apricotdiap.com/) to accumulate, manage, and publicize scientific data of apricot. 展开更多
关键词 APRICOT VARIETY Convolutional neural network Deep learning Database platform Mobile application Image retrieval
下载PDF
A Weighted Multi-Layer Analytics Based Model for Emoji Recommendation
13
作者 Amira M.Idrees Abdul Lateef Marzouq Al-Solami 《Computers, Materials & Continua》 SCIE EI 2024年第1期1115-1133,共19页
The developed system for eye and face detection using Convolutional Neural Networks(CNN)models,followed by eye classification and voice-based assistance,has shown promising potential in enhancing accessibility for ind... The developed system for eye and face detection using Convolutional Neural Networks(CNN)models,followed by eye classification and voice-based assistance,has shown promising potential in enhancing accessibility for individuals with visual impairments.The modular approach implemented in this research allows for a seamless flow of information and assistance between the different components of the system.This research significantly contributes to the field of accessibility technology by integrating computer vision,natural language processing,and voice technologies.By leveraging these advancements,the developed system offers a practical and efficient solution for assisting blind individuals.The modular design ensures flexibility,scalability,and ease of integration with existing assistive technologies.However,it is important to acknowledge that further research and improvements are necessary to enhance the system’s accuracy and usability.Fine-tuning the CNN models and expanding the training dataset can improve eye and face detection as well as eye classification capabilities.Additionally,incorporating real-time responses through sophisticated natural language understanding techniques and expanding the knowledge base of ChatGPT can enhance the system’s ability to provide comprehensive and accurate responses.Overall,this research paves the way for the development of more advanced and robust systems for assisting visually impaired individuals.By leveraging cutting-edge technologies and integrating them into amodular framework,this research contributes to creating a more inclusive and accessible society for individuals with visual impairments.Future work can focus on refining the system,addressing its limitations,and conducting user studies to evaluate its effectiveness and impact in real-world scenarios. 展开更多
关键词 Social networks text analytics emoji prediction features extraction information retrieval
下载PDF
Physics-informed deep learning for fringe pattern analysis
14
作者 Wei Yin Yuxuan Che +6 位作者 Xinsheng Li Mingyu Li Yan Hu Shijie Feng Edmund Y.Lam Qian Chen Chao Zuo 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第1期4-15,共12页
Recently,deep learning has yielded transformative success across optics and photonics,especially in optical metrology.Deep neural networks (DNNs) with a fully convolutional architecture (e.g.,U-Net and its derivatives... Recently,deep learning has yielded transformative success across optics and photonics,especially in optical metrology.Deep neural networks (DNNs) with a fully convolutional architecture (e.g.,U-Net and its derivatives) have been widely implemented in an end-to-end manner to accomplish various optical metrology tasks,such as fringe denoising,phase unwrapping,and fringe analysis.However,the task of training a DNN to accurately identify an image-to-image transform from massive input and output data pairs seems at best naive,as the physical laws governing the image formation or other domain expertise pertaining to the measurement have not yet been fully exploited in current deep learning practice.To this end,we introduce a physics-informed deep learning method for fringe pattern analysis (PI-FPA) to overcome this limit by integrating a lightweight DNN with a learning-enhanced Fourier transform profilometry (Le FTP) module.By parameterizing conventional phase retrieval methods,the Le FTP module embeds the prior knowledge in the network structure and the loss function to directly provide reliable phase results for new types of samples,while circumventing the requirement of collecting a large amount of high-quality data in supervised learning methods.Guided by the initial phase from Le FTP,the phase recovery ability of the lightweight DNN is enhanced to further improve the phase accuracy at a low computational cost compared with existing end-to-end networks.Experimental results demonstrate that PI-FPA enables more accurate and computationally efficient single-shot phase retrieval,exhibiting its excellent generalization to various unseen objects during training.The proposed PI-FPA presents that challenging issues in optical metrology can be potentially overcome through the synergy of physics-priors-based traditional tools and data-driven learning approaches,opening new avenues to achieve fast and accurate single-shot 3D imaging. 展开更多
关键词 optical metrology deep learning physics-informed neural networks fringe analysis phase retrieval
下载PDF
Orbit Weighting Scheme in the Context of Vector Space Information Retrieval
15
作者 Ahmad Ababneh Yousef Sanjalawe +2 位作者 Salam Fraihat Salam Al-E’mari Hamzah Alqudah 《Computers, Materials & Continua》 SCIE EI 2024年第7期1347-1379,共33页
This study introduces the Orbit Weighting Scheme(OWS),a novel approach aimed at enhancing the precision and efficiency of Vector Space information retrieval(IR)models,which have traditionally relied on weighting schem... This study introduces the Orbit Weighting Scheme(OWS),a novel approach aimed at enhancing the precision and efficiency of Vector Space information retrieval(IR)models,which have traditionally relied on weighting schemes like tf-idf and BM25.These conventional methods often struggle with accurately capturing document relevance,leading to inefficiencies in both retrieval performance and index size management.OWS proposes a dynamic weighting mechanism that evaluates the significance of terms based on their orbital position within the vector space,emphasizing term relationships and distribution patterns overlooked by existing models.Our research focuses on evaluating OWS’s impact on model accuracy using Information Retrieval metrics like Recall,Precision,InterpolatedAverage Precision(IAP),andMeanAverage Precision(MAP).Additionally,we assessOWS’s effectiveness in reducing the inverted index size,crucial for model efficiency.We compare OWS-based retrieval models against others using different schemes,including tf-idf variations and BM25Delta.Results reveal OWS’s superiority,achieving a 54%Recall and 81%MAP,and a notable 38%reduction in the inverted index size.This highlights OWS’s potential in optimizing retrieval processes and underscores the need for further research in this underrepresented area to fully leverage OWS’s capabilities in information retrieval methodologies. 展开更多
关键词 Information retrieval orbit weighting scheme semantic text analysis Tf-Idf weighting scheme vector space model
下载PDF
Efficiency-Driven Custom Chatbot Development: Unleashing LangChain, RAG, and Performance-Optimized LLM Fusion
16
作者 S.Vidivelli Manikandan Ramachandran A.Dharunbalaji 《Computers, Materials & Continua》 SCIE EI 2024年第8期2423-2442,共20页
This exploration acquaints a momentous methodology with custom chatbot improvement that focuses on pro-ficiency close by viability.We accomplish this by joining three key innovations:LangChain,Retrieval Augmented Gene... This exploration acquaints a momentous methodology with custom chatbot improvement that focuses on pro-ficiency close by viability.We accomplish this by joining three key innovations:LangChain,Retrieval Augmented Generation(RAG),and enormous language models(LLMs)tweaked with execution proficient strategies like LoRA and QLoRA.LangChain takes into consideration fastidious fitting of chatbots to explicit purposes,guaranteeing engaged and important collaborations with clients.RAG’s web scratching capacities engage these chatbots to get to a tremendous store of data,empowering them to give exhaustive and enlightening reactions to requests.This recovered data is then decisively woven into reaction age utilizing LLMs that have been calibrated with an emphasis on execution productivity.This combination approach offers a triple advantage:further developed viability,upgraded client experience,and extended admittance to data.Chatbots become proficient at taking care of client questions precisely and productively,while instructive and logically pertinent reactions make a more regular and drawing in cooperation for clients.At last,web scratching enables chatbots to address a more extensive assortment of requests by conceding them admittance to a more extensive information base.By digging into the complexities of execution proficient LLM calibrating and underlining the basic job of web-scratched information,this examination offers a critical commitment to propelling custom chatbot plan and execution.The subsequent chatbots feature the monstrous capability of these advancements in making enlightening,easy to understand,and effective conversational specialists,eventually changing the manner in which clients cooperate with chatbots. 展开更多
关键词 LangChain retrieval augumental generation(RAG) fine tuning
下载PDF
Semantic web-based networked manufacturing knowledge retrieval system
17
作者 井浩 张璟 李军怀 《Journal of Southeast University(English Edition)》 EI CAS 2007年第3期333-337,共5页
To deal with a lack of semantic interoperability of traditional knowledge retrieval approaches, a semantic-based networked manufacturing (NM) knowledge retrieval architecture is proposed, which offers a series of to... To deal with a lack of semantic interoperability of traditional knowledge retrieval approaches, a semantic-based networked manufacturing (NM) knowledge retrieval architecture is proposed, which offers a series of tools for supporting the sharing of knowledge and promoting NM collaboration. A 5-tuple based semantic information retrieval model is proposed, which includes the interoperation on the semantic layer, and a test process is given for this model. The recall ratio and the precision ratio of manufacturing knowledge retrieval are proved to be greatly improved by evaluation. Thus, a practical and reliable approach based on the semantic web is provided for solving the correlated concrete problems in regional networked manufacturing. 展开更多
关键词 knowledge retrieval semantic web ONTOLOGY networked manufacturing
下载PDF
Spatio-temporal Evolution Characteristics and Driving Forces of Winter Urban Heat Island:A Case Study of Rapid Urbanization Area of Fuzhou City,China
18
作者 WANG Zili LU Chunyan +4 位作者 SU Yanlin SU Yue YU Qianru LI Wenzhe YANG Nuocheng 《Chinese Geographical Science》 SCIE CSCD 2024年第1期135-148,共14页
Under the influence of anthropogenic and climate change,the problems caused by urban heat island(UHI)has become increasingly prominent.In order to promote urban sustainable development and improve the quality of human... Under the influence of anthropogenic and climate change,the problems caused by urban heat island(UHI)has become increasingly prominent.In order to promote urban sustainable development and improve the quality of human settlements,it is significant for exploring the evolution characteristics of urban thermal environment and analyzing its driving forces.Taking the Landsat series images as the basic data sources,the winter land surface temperature(LST)of the rapid urbanization area of Fuzhou City in China was quantitatively retrieved from 2001 to 2021.Combing comprehensively the standard deviation ellipse model,profile analysis and GeoDetector model,the spatio-temporal evolution characteristics and influencing factors of the winter urban thermal environment were systematically analyzed.The results showed that the winter LST presented an increasing trend in the study area during 2001–2021,and the winter LST of the central urban regions was significantly higher than the suburbs.There was a strong UHI effect from 2001 to 2021with an expansion trend from the central urban regions to the suburbs and coastal areas in space scale.The LST of green lands and wetlands are significantly lower than croplands,artificial surface and unvegetated lands.Vegetation and water bodies had a significant mitigation effect on UHI,especially in the micro-scale.The winter UHI had been jointly driven by the underlying surface and socio-economic factors in a nonlinear or two-factor interactive enhancement mode,and socio-economic factors had played a leading role.This research could provide data support and decision-making references for rationally planning urban layout and promoting sustainable urban development. 展开更多
关键词 winter urban heat island(UHI) rapid urbanization area land surface temperature(LST)retrieval profile analysis GeoDetector model Fuzhou City China
下载PDF
Region-Aware Fashion Contrastive Learning for Unified Attribute Recognition and Composed Retrieval
19
作者 WANG Kangping ZHAO Mingbo 《Journal of Donghua University(English Edition)》 CAS 2024年第4期405-415,共11页
Clothing attribute recognition has become an essential technology,which enables users to automatically identify the characteristics of clothes and search for clothing images with similar attributes.However,existing me... Clothing attribute recognition has become an essential technology,which enables users to automatically identify the characteristics of clothes and search for clothing images with similar attributes.However,existing methods cannot recognize newly added attributes and may fail to capture region-level visual features.To address the aforementioned issues,a region-aware fashion contrastive language-image pre-training(RaF-CLIP)model was proposed.This model aligned cropped and segmented images with category and multiple fine-grained attribute texts,achieving the matching of fashion region and corresponding texts through contrastive learning.Clothing retrieval found suitable clothing based on the user-specified clothing categories and attributes,and to further improve the accuracy of retrieval,an attribute-guided composed network(AGCN)as an additional component on RaF-CLIP was introduced,specifically designed for composed image retrieval.This task aimed to modify the reference image based on textual expressions to retrieve the expected target.By adopting a transformer-based bidirectional attention and gating mechanism,it realized the fusion and selection of image features and attribute text features.Experimental results show that the proposed model achieves a mean precision of 0.6633 for attribute recognition tasks and a recall@10(recall@k is defined as the percentage of correct samples appearing in the top k retrieval results)of 39.18 for composed image retrieval task,satisfying user needs for freely searching for clothing through images and texts. 展开更多
关键词 attribute recognition image retrieval contrastive language-image pre-training(CLIP) image text matching transformer
下载PDF
A Survey of Crime Scene Investigation Image Retrieval Using Deep Learning
20
作者 Ying Liu Aodong Zhou +1 位作者 Jize Xue Zhijie Xu 《Journal of Beijing Institute of Technology》 EI CAS 2024年第4期271-286,共16页
Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep... Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep learning,data-driven paradigm has become the mainstreammethod of CSI image feature extraction and representation,and in this process,datasets provideeffective support for CSI retrieval performance.However,there is a lack of systematic research onCSI image retrieval methods and datasets.Therefore,we present an overview of the existing worksabout one-class and multi-class CSI image retrieval based on deep learning.According to theresearch,based on their technical functionalities and implementation methods,CSI image retrievalis roughly classified into five categories:feature representation,metric learning,generative adversar-ial networks,autoencoder networks and attention networks.Furthermore,We analyzed the remain-ing challenges and discussed future work directions in this field. 展开更多
关键词 crime scene investigation(CSI)image image retrieval deep learning
下载PDF
上一页 1 2 49 下一页 到第
使用帮助 返回顶部