This paper studies a defined contribution(DC)pension fund investment problem with return of premiums clauses in a stochastic interest rate and stochastic volatility environment.In practice,most of pension plans were s...This paper studies a defined contribution(DC)pension fund investment problem with return of premiums clauses in a stochastic interest rate and stochastic volatility environment.In practice,most of pension plans were subject to the return of premiums clauses to protect the rights of pension members who died before retirement.In the mathematical modeling,we assume that a part of pension members could withdraw their premiums if they died before retirement and surviving members could equally share the difference between accumulated contributions and returned premiums.We suppose that the financial market consists of a risk-free asset,a stock,and a zero-coupon bond.The interest rate is driven by a stochastic affine interest rate model and the stock price follows the Heston’s stochastic volatility model with stochastic interest rates.Different fund managers have different risk preferences,and the hyperbolic absolute risk aversion(HARA)utility function is a general one including a power utility,an exponential utility,and a logarithm utility as special cases.We are concerned with an optimal portfolio to maximize the expected utility of terminal wealth by choosing the HARA utility function in the analysis.By using the principle of dynamic programming and Legendre transform-dual theory,we obtain explicit solutions of optimal strategies.Some special cases are also derived in detail.Finally,a numerical simulation is provided to illustrate our results.展开更多
基金supported by the National Social Science Foundation of China (No.21FJYB042)。
文摘This paper studies a defined contribution(DC)pension fund investment problem with return of premiums clauses in a stochastic interest rate and stochastic volatility environment.In practice,most of pension plans were subject to the return of premiums clauses to protect the rights of pension members who died before retirement.In the mathematical modeling,we assume that a part of pension members could withdraw their premiums if they died before retirement and surviving members could equally share the difference between accumulated contributions and returned premiums.We suppose that the financial market consists of a risk-free asset,a stock,and a zero-coupon bond.The interest rate is driven by a stochastic affine interest rate model and the stock price follows the Heston’s stochastic volatility model with stochastic interest rates.Different fund managers have different risk preferences,and the hyperbolic absolute risk aversion(HARA)utility function is a general one including a power utility,an exponential utility,and a logarithm utility as special cases.We are concerned with an optimal portfolio to maximize the expected utility of terminal wealth by choosing the HARA utility function in the analysis.By using the principle of dynamic programming and Legendre transform-dual theory,we obtain explicit solutions of optimal strategies.Some special cases are also derived in detail.Finally,a numerical simulation is provided to illustrate our results.