Introduction: The effective sterilization of reusable instruments in dental care is a crucial issue for public health. The aim of this study was to contribute to improving the processing conditions of reusable care in...Introduction: The effective sterilization of reusable instruments in dental care is a crucial issue for public health. The aim of this study was to contribute to improving the processing conditions of reusable care instruments in dental practices in the city of Conakry. Methods: We carried out an observational and cross-sectional study of a descriptive type lasting three months from January to April 2022 in public and private dental practices approved for activities. Results: A total of 48 dental practices were surveyed, including 7 public and 41 private. 91.67% had the trays for instrument sterilization. 77.08% had a sterilization device. The instruments were: cleaned 100%, disinfected 70.83%, sterilized 20.83% and 20.83% reused the instruments without being sterilized. 72.97% sterilized the instruments at the end of the day. 50% of respondents declared that there were six stages of sterilization. According to standard standards, one dental office or 2.70% respected the normal sterilization process and 13.51% respected the duration and temperature. The storage quality was inadequate at 95.83%. 95.83% of dental practices are at high risk of contamination. The difficulties encountered by staff in daily activity during our study were lack of hygienists (87.50%), insufficient material resources (58.33%), and lack of protocol procedure (45.83%). Conclusion: This study allowed us to note shortcomings of dental surgeons in the process of processing reusable care materials.展开更多
The reusable launch vehicle (RLV) presents a new avenue for reducing cost of space transportation. The landing mechanism, which provides landing support and impact absorption, is a vital component of the RLV at final ...The reusable launch vehicle (RLV) presents a new avenue for reducing cost of space transportation. The landing mechanism, which provides landing support and impact absorption, is a vital component of the RLV at final stage of recovery. This study proposes a novel legged deployable landing mechanism (LDLM) for RLV. The Watt-II six-bar mechanism is adopted to obtain the preferred configuration via the application of the linkage variation approach. To endow the proposed LDLM with advantages of large landing support region, lightweight, and reasonable linkage internal forces, a multi-objective optimization paradigm is developed. Furthermore, the optimal scale parameters for guiding the LDLM prototype design is obtained numerically using the non-dominated sorting genetic algorithm-II (NSGA-II) evolutionary algorithm. A fully-functional scaled RLV prototype is developed by integrating the gravity-governed deploying scheme to facilitate unfolding action to avoid full-range actuation, a dual-backup locking mechanism to enhance reliability of structure stiffening as fully deployed, and a shock absorber (SA) with multistage honeycomb to offer reliable shock absorbing performance. The experimental results demonstrate that the proposed LDLM is capable of providing rapid and smooth deployment (duration less than 1.5 s) with mild posture disturbance to the cabin (yaw and pitch fluctuations less than 6°). In addition, it provides satisfactory impact attenuation (acceleration peak less than 10g (g is the gravitational acceleration)) in the 0.2 m freefall test, which makes the proposed LDLM a potential alternative for developing future RLV archetype.展开更多
Agile Supply Chain Management (ASCM) is one of the ke y techniques, which support dynamic enterprise alliance and realize agile manufa cturing. But the optimal run of ASCS depends on a good-constructed Agile Supply Ch...Agile Supply Chain Management (ASCM) is one of the ke y techniques, which support dynamic enterprise alliance and realize agile manufa cturing. But the optimal run of ASCS depends on a good-constructed Agile Supply Chain Management System (ASCMS), so that the materials flow, information flow a nd funding flow in the supply chain are used with high efficiency. The requireme nts of ASCMS are constantly changeable, which requires that ASCMS has dynamical reuse, integration and open interface. Reusable components theory is one of the most important directions of software engineering. It’s a feasible approach to solve software crisis and to increase software productivity and quality. ASCMS d eveloped with reusable components can easily be re-constructed, and has good op en interfaces. It will also sharply shorten the development life circle of syste m, and avoid unnecessary errors that result from the process of re-developing t hose components. In order to develop ASCMS based on reusable components quickly, the first thing we need to do is to construct the framework for ASCMS called system architecture . The framework referred in this context is not only a reference system of ASCMS , but also the operation system (including run-time library and communication p rotocols), which the ASCMS determined. So we can abstract logic units of the sys tem (they are the logic base of the ASCMS components), and the relationships amo ng them. And the operation system and communication protocols provide these comp onents with a running platform. Of course, the most important thing is to constr uct an abundant components depository. Components in the depository should h ave some properties such as: (1) Components should be built upon a specific oper ation system (e.g., windows) and standard communication protocols (e.g., IIOP in CORBA’s specification); (2)Self-containment, that shows it’s unnecessary to include other components when some component is reused since that component cont ains the needed relevant components in itself; (3) Identification, components ha ve to be clearly identifiable, that shows components are contained in a file rat her than spread over other systems and intermixed with other modules of soft ware; (4) Functionality, that shows components have a clearly specified function ality; (5)Open interface; (6) Comprehensive and brief documentation Moreover, it ’s necessary to classify these components properly so as to manage the deposito ry efficiently. Thus in this paper, we will firstly describe in detail the basic reusable model of SCMS and also the properties and depiction methods of business objects an d business components in SCMS. And then we will establish the 5-layer model of business components in SCMS and discuss the methods to get and store the reusabl e components. Based on those introduced, we will provide an assembling method fo r the constructing of SCMS, making use of component technology and an applicatio n is presented.展开更多
Heavy metal(HM)pollution is a serious environment problem.Recovering HM from industrial wastewater by efficient adsorbents is a sustainable method due to recycling HM and acquiring reusable water.However,popular effic...Heavy metal(HM)pollution is a serious environment problem.Recovering HM from industrial wastewater by efficient adsorbents is a sustainable method due to recycling HM and acquiring reusable water.However,popular efficient adsorbents are usually expensive or non-reusable.In this paper,methods of efficient HM recycling and water reuse from industrial wastewater were developed using efficient adsorbents,new polyphenylene sulfide derivatives,which are recyclable and stable in an acidic,alkaline or oxidative aqueous solution.Moreover,they can efficiently and quickly adsorb HM ions.The maximum adsorption capacities of these adsorbents for HM ions are at the range from 51.3-184.2 mg·g^(-1).The adsorption equilibrium times of them for HM ions are at the range from 10 to 80 min.Therefore,this paper suggests sustainable methods of HM recovery and water reuse from industrial wastewater.展开更多
The footpad structure of a deep space exploration lander is a critical system that makes the initial contact with the ground,and thereby plays a crucial role in determining the stability and energy absorption characte...The footpad structure of a deep space exploration lander is a critical system that makes the initial contact with the ground,and thereby plays a crucial role in determining the stability and energy absorption characteristics during the impact process.The conventional footpad is typically designed with an aluminum honeycomb structure that dissipates energy through plastic deformation.Nevertheless,its effectiveness in providing cushioning and energy absorption becomes significantly compromised when the structure is crushed,rendering it unusable for reusable landers in the future.This study presents a methodology for designing and evaluating structural energy absorption systems incorporating recoverable strain constraints of shape memory alloys(SMA).The topological configuration of the energy absorbing structure is derived using an equivalent static load method(ESL),and three lightweight footpad designs featuring honeycomb-like Ni-Ti shape memory alloys structures and having variable stiffness skins are proposed.To verify the accuracy of the numerical modelling,a honeycomb-like structure subjected to compression load is modeled and then compared with experimental results.Moreover,the influence of the configurations and thickness distribution of the proposed structures on their energy absorption performance is comprehensively evaluated using finite element simulations.The results demonstrate that the proposed design approach effectively regulates the strain threshold to maintain the SMA within the constraint of maximum recoverable strain,resulting in a structural energy absorption capacity of 362 J/kg with a crushing force efficiency greater than 63%.展开更多
Afuzzy extractor can extract an almost uniformrandom string from a noisy source with enough entropy such as biometric data.To reproduce an identical key from repeated readings of biometric data,the fuzzy extractor gen...Afuzzy extractor can extract an almost uniformrandom string from a noisy source with enough entropy such as biometric data.To reproduce an identical key from repeated readings of biometric data,the fuzzy extractor generates a helper data and a random string from biometric data and uses the helper data to reproduce the random string from the second reading.In 2013,Fuller et al.proposed a computational fuzzy extractor based on the learning with errors problem.Their construction,however,can tolerate a sub-linear fraction of errors and has an inefficient decoding algorithm,which causes the reproducing time to increase significantly.In 2016,Canetti et al.proposed a fuzzy extractor with inputs from low-entropy distributions based on a strong primitive,which is called digital locker.However,their construction necessitates an excessive amount of storage space for the helper data,which is stored in authentication server.Based on these observations,we propose a new efficient computational fuzzy extractorwith small size of helper data.Our scheme supports reusability and robustness,which are security notions that must be satisfied in order to use a fuzzy extractor as a secure authentication method in real life.Also,it conceals no information about the biometric data and thanks to the new decoding algorithm can tolerate linear errors.Based on the non-uniform learning with errors problem,we present a formal security proof for the proposed fuzzy extractor.Furthermore,we analyze the performance of our fuzzy extractor scheme and provide parameter sets that meet the security requirements.As a result of our implementation and analysis,we show that our scheme outperforms previous fuzzy extractor schemes in terms of the efficiency of the generation and reproduction algorithms,as well as the size of helper data.展开更多
The most significant invention made in recent years to serve various applications is software.Developing a faultless software system requires the soft-ware system design to be resilient.To make the software design more...The most significant invention made in recent years to serve various applications is software.Developing a faultless software system requires the soft-ware system design to be resilient.To make the software design more efficient,it is essential to assess the reusability of the components used.This paper proposes a software reusability prediction model named Flexible Random Fit(FRF)based on aging resilience for a Service Net(SN)software system.The reusability predic-tion model is developed based on a multilevel optimization technique based on software characteristics such as cohesion,coupling,and complexity.Metrics are obtained from the SN software system,which is then subjected to min-max nor-malization to avoid any saturation during the learning process.The feature extrac-tion process is made more feasible by enriching the data quality via outlier detection.The reusability of the classes is estimated based on a tool called Soft Audit.Software reusability can be predicted more effectively based on the pro-posed FRF-ANN(Flexible Random Fit-Artificial Neural Network)algorithm.Performance evaluation shows that the proposed algorithm outperforms all the other techniques,thus ensuring the optimization of software reusability based on aging resilient.The model is then tested using constraint-based testing techni-ques to make sure that it is perfect at optimizing and making predictions.展开更多
Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabrica...Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabricate multifunctional and environmentally friendly materials,which can be stably applied to purify the actual complicated wastewater.Here,a Ag/Ag/α-Fe_(2)O_(3) heterostructure anchored copper mesh was intentionally synthesized using a facile two-step hydrothermal method.The resultant mesh with superhydrophilicity and underwater superoleophobicity was capable of separating various oil/water mixtures with superior separation efficiency and high permeationflux driven by gravity.Benefiting from the joint effects of the smaller band gap of Ag/α-Fe_(2)O_(3) heterojunction,inherent antibacterial capacity of Ag/α-Fe_(2)O_(3) and Ag nanoparticles,favorable conductive substrate,as well as the hierarchical structure with superwettability,such mesh presented remarkably enhanced degradation capability toward organic dyes under visible light irradiation and antibacterial activity against both Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)compared with the pure Ag/α-Fe_(2)O_(3) coated mesh.Impressively,the mesh exhibited bifunctional water purification performance,in which organic dyes were eliminated simultaneously from water during oil/water separation in onefiltration process.More importantly,this mesh behaved exceptional chemical resistance,mechanical stability and long-term reusability.Therefore,this material with multifunctional integration may hold promising potential for steady water purification in practice.展开更多
The significant impact of stress on health necessitates accurate assessment methods,where traditional questionnaires lack reliability and objectivity.Current advancements like wearables with electrocardiogram(ECG)and ...The significant impact of stress on health necessitates accurate assessment methods,where traditional questionnaires lack reliability and objectivity.Current advancements like wearables with electrocardiogram(ECG)and galvanic skin response(GSR)sensors face accuracy and artifact challenges.Molecular biosensors detecting cortisol,a critical stress hormone,present a promising solution.However,existing cortisol assays,requiring saliva,urine,or blood,are complex,expensive,and unsuitable for continuous monitoring.Our study introduces a passive,molecularly imprinted polymer-radio-frequency(MIP-RF)wearable sensing system for real-time,non-invasive sweat cortisol assessment.This system is wireless,flexible,battery-free,reusable,environmentally stable,and designed for long-term monitoring,using an inductance-capacitance transducer.The transducer translates cortisol concentrations into resonant frequency shifts with high sensitivity(~160 kHz/(log(μM)))across a physiological range of 0.025–1μM.Integrated with near-field communication(NFC)for wireless and battery-free operation,and threedimensional(3D)-printed microfluidic channel for in-situ sweat collection,it enables daily activity cortisol level tracking.Validation of cortisol circadian rhythm through morning and evening measurements demonstrates its effectiveness in tracking and monitoring sweat cortisol levels.A 28-day stability test and the use of cost-effective 3D nanomaterials printing enhance its economic viability and reusability.This innovation paves the way for a new era in realistic,on-demand health monitoring outside the laboratory,leveraging wearable technology for molecular stress biomarker detection.展开更多
The continued expansion of the world population,increasingly inconsistent climate and shrinking agricultural resources present major challenges to crop breeding.Fortunately,the increasing ability to discover and manip...The continued expansion of the world population,increasingly inconsistent climate and shrinking agricultural resources present major challenges to crop breeding.Fortunately,the increasing ability to discover and manipulate genes creates new opportunities to develop more productive and resilient cultivars.Many genes have been described in papers as being beneficial for yield increase.However,few of them have been translated into increased yield on farms.In contrast,commercial breeders are facing gene decidophobia,i.e.,puzzled about which gene to choose for breeding among the many identified,a huge chasm between gene discovery and cultivar innovation.The purpose of this paper is to draw attention to the shortfalls in current gene discovery research and to emphasise the need to align with cultivar innovation.The methodology dictates that genetic studies not only focus on gene discovery but also pay good attention to the genetic backgrounds,experimental validation in relevant environments,appropriate crop management,and data reusability.The close of the gaps should accelerate the application of molecular study in breeding and contribute to future global food security.展开更多
Efficient and convenient treatment of industrial dyeing wastewater is of great significance to guarantee human and animal health.This work presented the enhanced catalytic activity at pH 3.0 of laccase immobilized on ...Efficient and convenient treatment of industrial dyeing wastewater is of great significance to guarantee human and animal health.This work presented the enhanced catalytic activity at pH 3.0 of laccase immobilized on amino-functionalized ZnFe_(2)O_(4) nanoparticles(ZnFe_(2)O_(4)-laccase)and its application for the degradation of textile dyes.Due to the existence of a large number of oxygen vacancies on the surface of the ZnFe_(2)O_(4) nanoparticles,negative ions accumulated on the magnetic carriers,which resulted in a harsh optimal pH value of the ZnFe_(2)O_(4)-laccase.Laccase activity assays revealed that the ZnFe_(2)O_(4)-laccase possessed superior pH and thermal stabilities,excellent reusability,and noticeable organic solvent tolerance.Meanwhile,the ZnFe_(2)O_(4) laccase presented efficient and sustainable degradation of high concentrations of textile dyes.The initial decoloration efficiencies of malachite green(MG),brilliant green(BG),azophloxine,crystal violet(CV),reactive blue 19(RB19),and procion red MX-5B were approximately 99.1%,95.0%,93.3%,87.4%,86.1%,and 85.3%,respectively.After 10 consecutive reuses,the degradation rates of the textile dyes still maintained about 98.2%,92.5%,83.2%,81.5%,79.8%and 65.9%,respectively.The excellent dye degradation properties indicate that the ZnFe_(2)O_(4)-laccase has a technical application in high concentrations of dyestuff treatment.展开更多
As organizations increasingly embrace digital transformation, the integration of modern web technologies like React.js with Business Process Management (BPM) applications has become essential. React components offer f...As organizations increasingly embrace digital transformation, the integration of modern web technologies like React.js with Business Process Management (BPM) applications has become essential. React components offer flexibility, reusability, and scalability, making them ideal for enhancing user interfaces and driving user engagement within BPM environments. This article explores the benefits, challenges, and best practices of leveraging React components in BPM applications, along with real-world examples of successful implementations.展开更多
There is a consensus in the aerospace field that the development of reusable liquid rockets can effectively reduce the launch expense.The pursuit of a long service life and reutilization highly depends on the bearing ...There is a consensus in the aerospace field that the development of reusable liquid rockets can effectively reduce the launch expense.The pursuit of a long service life and reutilization highly depends on the bearing components.However,the rolling element bearings(REBs)used in the existing rocket turbopumps present obvious and increasing limitations due to their mechanical contacting mode.For REBs,high rotational speed and long service life are two performance indexes that mutually restrict each other.To go beyond the DN value(the product of the bearing bore and rotational speed)limit of REBs,the major space powers have conducted substantial explorations on the use of new types of bearings to replace the REB.This review discusses,first,the crucial role of bearings in rocket turbopumps and the related structural improvements of REBs.Then,with the prospect of application to the next generation of reusable liquid rocket turbopumps,the bearing candidates investigated by major space powers are summarized comprehensively.These promising alternatives to REBs include fluid-film,foil,and magnetic bearings,together with the novel superconducting compound bearings recently proposed by our team.Our more than ten years of relevant research on fluid-film and magnetic bearings are also introduced.This review is meaningful for the development of long-life and highly reliable bearings to be used in future reusable rocket turbopumps.展开更多
As an innovative software application mode,Software as a service(SaaS) shows many attractive advantages.Migrating legacy system to SaaS can make outdated systems revived.In the process of migration,the existing valuab...As an innovative software application mode,Software as a service(SaaS) shows many attractive advantages.Migrating legacy system to SaaS can make outdated systems revived.In the process of migration,the existing valuable components need to be discovered and reused in order that the target system could be developed/integrated more efficiently.An innovative approach is proposed in this paper to extract the reusable components from legacy systems.Firstly,implementation models of legacy system are recovered through reverse engineering.Secondly,function models are derived by vertical clustering,and then logical components are discovered by horizontal clustering based on the function models.Finally,the reusable components with specific feature descriptions are extracted.Through experimental verification,the approach is considered to be efficient in reusable component discovery and to be helpful to migrating legacy system to SaaS.展开更多
A highly efficient one-pot synthesis of 1,8-dioxooctahydroxanthenes under solvent-free conditions catalyzed by sulfonic acid covalently anchored onto the surface of silica gel is reported. All types of aldehydes, incl...A highly efficient one-pot synthesis of 1,8-dioxooctahydroxanthenes under solvent-free conditions catalyzed by sulfonic acid covalently anchored onto the surface of silica gel is reported. All types of aldehydes, including aromatic, unsaturated, and heterocyclic, are used. The silica gel/sulfonic acid catalyst (SiO2-R-SO3H) is completely heterogeneous and can be recycled.展开更多
The coronavirus disease 2019(COVID-19)pandemic has caused a surge in demand for face masks,with the massive consumption of masks leading to an increase in resource-related and environmental con-cerns.In this work,we f...The coronavirus disease 2019(COVID-19)pandemic has caused a surge in demand for face masks,with the massive consumption of masks leading to an increase in resource-related and environmental con-cerns.In this work,we fabricated meltblown polypropylene(mb-PP)-based high-performance planar face masks and investigated the effects of six commonly used disinfection methods and various mask-wearing periods on the reusability of these masks.The results show that,after three cycles of treatment using hot water at 70℃ for 30 min,which is one of the most scalable,user-friendly methods for viral disinfection,the particle filtration efficiency(PFE)of the mask remained almost unchanged.After mask wearing for 24 h and subsequent disinfection using the same treatment procedures,the PFE decreased to 91.3%;the average number of bacterial and fungal colonies was assessed to be 9.2 and 51.6 colony-forming units per gram(CFU∙g^(-1)),respectively;and coliform and pyogenic bacteria were not detected.Both the PFE and the microbial indicators are well above the standard for reusable masks after disinfection.Schlieren pho-tography was then used to assess the capabilities of used and disinfected masks during use;it showed that the masks exhibit a high performance in suppressing the spread of breathed air.展开更多
Reentry attitude control for reusable launch vehicles (RLVs) is challenging due to the characters of fast nonlinear dy- namics and large flight envelop. A hierarchical structured attitude control system for an RLV i...Reentry attitude control for reusable launch vehicles (RLVs) is challenging due to the characters of fast nonlinear dy- namics and large flight envelop. A hierarchical structured attitude control system for an RLV is proposed and an unpowered RLV con- trol model is developed. Then, the hierarchical structured control frame consisting of attitude controller, compound control strategy and control allocation is presented. At the core of the design is a robust adaptive control (RAC) law based on dual loop time-scale separation. A radial basis function neural network (RBFNN) is implemented for compensation of uncertain model dynamics and external disturbances in the inner loop. And then the robust op- timization is applied in the outer loop to guarantee performance robustness. The overall control design frame retains the simplicity in design while simultaneously assuring the adaptive and robust performance. The hierarchical structured robust adaptive con- troller (HSRAC) incorporates flexibility into the design with regard to controller versatility to various reentry mission requirements. Simulation results show that the improved tracking performance is achieved by means of RAC.展开更多
To be close to the practical flight process and increase the precision of optimal trajectory, a six-degree-offreedom(6-DOF) trajectory is optimized for the reusable launch vehicle(RLV) using the Gauss pseudospectr...To be close to the practical flight process and increase the precision of optimal trajectory, a six-degree-offreedom(6-DOF) trajectory is optimized for the reusable launch vehicle(RLV) using the Gauss pseudospectral method(GPM). Different from the traditional trajectory optimization problem which generally considers the RLV as a point mass, the coupling between translational dynamics and rotational dynamics is taken into account. An optimization problem is formulated to minimize a performance index subject to 6-DOF equations of motion, including translational and rotational dynamics. A two-step optimal strategy is then introduced to reduce the large calculations caused by multiple variables and convergence confinement in 6-DOF trajectory optimization. The simulation results demonstrate that the 6-DOF trajectory optimal strategy for RLV is feasible.展开更多
Based on current research,the development trend of reusable liquid rocket engines was analyzed.Key technologies and research focuses of the reusable liquid rocket engine have been analyzed and summarized,and then sugg...Based on current research,the development trend of reusable liquid rocket engines was analyzed.Key technologies and research focuses of the reusable liquid rocket engine have been analyzed and summarized,and then suggestions on the development of future key technologies are proposed.展开更多
文摘Introduction: The effective sterilization of reusable instruments in dental care is a crucial issue for public health. The aim of this study was to contribute to improving the processing conditions of reusable care instruments in dental practices in the city of Conakry. Methods: We carried out an observational and cross-sectional study of a descriptive type lasting three months from January to April 2022 in public and private dental practices approved for activities. Results: A total of 48 dental practices were surveyed, including 7 public and 41 private. 91.67% had the trays for instrument sterilization. 77.08% had a sterilization device. The instruments were: cleaned 100%, disinfected 70.83%, sterilized 20.83% and 20.83% reused the instruments without being sterilized. 72.97% sterilized the instruments at the end of the day. 50% of respondents declared that there were six stages of sterilization. According to standard standards, one dental office or 2.70% respected the normal sterilization process and 13.51% respected the duration and temperature. The storage quality was inadequate at 95.83%. 95.83% of dental practices are at high risk of contamination. The difficulties encountered by staff in daily activity during our study were lack of hygienists (87.50%), insufficient material resources (58.33%), and lack of protocol procedure (45.83%). Conclusion: This study allowed us to note shortcomings of dental surgeons in the process of processing reusable care materials.
文摘The reusable launch vehicle (RLV) presents a new avenue for reducing cost of space transportation. The landing mechanism, which provides landing support and impact absorption, is a vital component of the RLV at final stage of recovery. This study proposes a novel legged deployable landing mechanism (LDLM) for RLV. The Watt-II six-bar mechanism is adopted to obtain the preferred configuration via the application of the linkage variation approach. To endow the proposed LDLM with advantages of large landing support region, lightweight, and reasonable linkage internal forces, a multi-objective optimization paradigm is developed. Furthermore, the optimal scale parameters for guiding the LDLM prototype design is obtained numerically using the non-dominated sorting genetic algorithm-II (NSGA-II) evolutionary algorithm. A fully-functional scaled RLV prototype is developed by integrating the gravity-governed deploying scheme to facilitate unfolding action to avoid full-range actuation, a dual-backup locking mechanism to enhance reliability of structure stiffening as fully deployed, and a shock absorber (SA) with multistage honeycomb to offer reliable shock absorbing performance. The experimental results demonstrate that the proposed LDLM is capable of providing rapid and smooth deployment (duration less than 1.5 s) with mild posture disturbance to the cabin (yaw and pitch fluctuations less than 6°). In addition, it provides satisfactory impact attenuation (acceleration peak less than 10g (g is the gravitational acceleration)) in the 0.2 m freefall test, which makes the proposed LDLM a potential alternative for developing future RLV archetype.
文摘Agile Supply Chain Management (ASCM) is one of the ke y techniques, which support dynamic enterprise alliance and realize agile manufa cturing. But the optimal run of ASCS depends on a good-constructed Agile Supply Chain Management System (ASCMS), so that the materials flow, information flow a nd funding flow in the supply chain are used with high efficiency. The requireme nts of ASCMS are constantly changeable, which requires that ASCMS has dynamical reuse, integration and open interface. Reusable components theory is one of the most important directions of software engineering. It’s a feasible approach to solve software crisis and to increase software productivity and quality. ASCMS d eveloped with reusable components can easily be re-constructed, and has good op en interfaces. It will also sharply shorten the development life circle of syste m, and avoid unnecessary errors that result from the process of re-developing t hose components. In order to develop ASCMS based on reusable components quickly, the first thing we need to do is to construct the framework for ASCMS called system architecture . The framework referred in this context is not only a reference system of ASCMS , but also the operation system (including run-time library and communication p rotocols), which the ASCMS determined. So we can abstract logic units of the sys tem (they are the logic base of the ASCMS components), and the relationships amo ng them. And the operation system and communication protocols provide these comp onents with a running platform. Of course, the most important thing is to constr uct an abundant components depository. Components in the depository should h ave some properties such as: (1) Components should be built upon a specific oper ation system (e.g., windows) and standard communication protocols (e.g., IIOP in CORBA’s specification); (2)Self-containment, that shows it’s unnecessary to include other components when some component is reused since that component cont ains the needed relevant components in itself; (3) Identification, components ha ve to be clearly identifiable, that shows components are contained in a file rat her than spread over other systems and intermixed with other modules of soft ware; (4) Functionality, that shows components have a clearly specified function ality; (5)Open interface; (6) Comprehensive and brief documentation Moreover, it ’s necessary to classify these components properly so as to manage the deposito ry efficiently. Thus in this paper, we will firstly describe in detail the basic reusable model of SCMS and also the properties and depiction methods of business objects an d business components in SCMS. And then we will establish the 5-layer model of business components in SCMS and discuss the methods to get and store the reusabl e components. Based on those introduced, we will provide an assembling method fo r the constructing of SCMS, making use of component technology and an applicatio n is presented.
基金supported by National Natural Science Foundation of China(21473092)Industry-University-Research Cooperation Project of Jiangsu Province(BY2021600)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX21_0985 and SJCX21_0375)。
文摘Heavy metal(HM)pollution is a serious environment problem.Recovering HM from industrial wastewater by efficient adsorbents is a sustainable method due to recycling HM and acquiring reusable water.However,popular efficient adsorbents are usually expensive or non-reusable.In this paper,methods of efficient HM recycling and water reuse from industrial wastewater were developed using efficient adsorbents,new polyphenylene sulfide derivatives,which are recyclable and stable in an acidic,alkaline or oxidative aqueous solution.Moreover,they can efficiently and quickly adsorb HM ions.The maximum adsorption capacities of these adsorbents for HM ions are at the range from 51.3-184.2 mg·g^(-1).The adsorption equilibrium times of them for HM ions are at the range from 10 to 80 min.Therefore,this paper suggests sustainable methods of HM recovery and water reuse from industrial wastewater.
基金Supported by Fundamental Research Funds for the Central Universities of China(Grant No.2021JBM021)National Natural Science Foundation of China(Grant Nos.52202431,52172353).
文摘The footpad structure of a deep space exploration lander is a critical system that makes the initial contact with the ground,and thereby plays a crucial role in determining the stability and energy absorption characteristics during the impact process.The conventional footpad is typically designed with an aluminum honeycomb structure that dissipates energy through plastic deformation.Nevertheless,its effectiveness in providing cushioning and energy absorption becomes significantly compromised when the structure is crushed,rendering it unusable for reusable landers in the future.This study presents a methodology for designing and evaluating structural energy absorption systems incorporating recoverable strain constraints of shape memory alloys(SMA).The topological configuration of the energy absorbing structure is derived using an equivalent static load method(ESL),and three lightweight footpad designs featuring honeycomb-like Ni-Ti shape memory alloys structures and having variable stiffness skins are proposed.To verify the accuracy of the numerical modelling,a honeycomb-like structure subjected to compression load is modeled and then compared with experimental results.Moreover,the influence of the configurations and thickness distribution of the proposed structures on their energy absorption performance is comprehensively evaluated using finite element simulations.The results demonstrate that the proposed design approach effectively regulates the strain threshold to maintain the SMA within the constraint of maximum recoverable strain,resulting in a structural energy absorption capacity of 362 J/kg with a crushing force efficiency greater than 63%.
基金supported by Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.2022-0-00518,Blockchain privacy preserving techniques based on data encryption).
文摘Afuzzy extractor can extract an almost uniformrandom string from a noisy source with enough entropy such as biometric data.To reproduce an identical key from repeated readings of biometric data,the fuzzy extractor generates a helper data and a random string from biometric data and uses the helper data to reproduce the random string from the second reading.In 2013,Fuller et al.proposed a computational fuzzy extractor based on the learning with errors problem.Their construction,however,can tolerate a sub-linear fraction of errors and has an inefficient decoding algorithm,which causes the reproducing time to increase significantly.In 2016,Canetti et al.proposed a fuzzy extractor with inputs from low-entropy distributions based on a strong primitive,which is called digital locker.However,their construction necessitates an excessive amount of storage space for the helper data,which is stored in authentication server.Based on these observations,we propose a new efficient computational fuzzy extractorwith small size of helper data.Our scheme supports reusability and robustness,which are security notions that must be satisfied in order to use a fuzzy extractor as a secure authentication method in real life.Also,it conceals no information about the biometric data and thanks to the new decoding algorithm can tolerate linear errors.Based on the non-uniform learning with errors problem,we present a formal security proof for the proposed fuzzy extractor.Furthermore,we analyze the performance of our fuzzy extractor scheme and provide parameter sets that meet the security requirements.As a result of our implementation and analysis,we show that our scheme outperforms previous fuzzy extractor schemes in terms of the efficiency of the generation and reproduction algorithms,as well as the size of helper data.
文摘The most significant invention made in recent years to serve various applications is software.Developing a faultless software system requires the soft-ware system design to be resilient.To make the software design more efficient,it is essential to assess the reusability of the components used.This paper proposes a software reusability prediction model named Flexible Random Fit(FRF)based on aging resilience for a Service Net(SN)software system.The reusability predic-tion model is developed based on a multilevel optimization technique based on software characteristics such as cohesion,coupling,and complexity.Metrics are obtained from the SN software system,which is then subjected to min-max nor-malization to avoid any saturation during the learning process.The feature extrac-tion process is made more feasible by enriching the data quality via outlier detection.The reusability of the classes is estimated based on a tool called Soft Audit.Software reusability can be predicted more effectively based on the pro-posed FRF-ANN(Flexible Random Fit-Artificial Neural Network)algorithm.Performance evaluation shows that the proposed algorithm outperforms all the other techniques,thus ensuring the optimization of software reusability based on aging resilient.The model is then tested using constraint-based testing techni-ques to make sure that it is perfect at optimizing and making predictions.
基金This work was financially supported by the Shandong Provincial Natural Science Foundation(ZR2020QB116)the Excellent Young Talents Foundation in Universities of Anhui Province(gxyq2021223)the Key Research Project of Natural Science in Universities of Anhui Province.(KJ2020A0749).
文摘Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabricate multifunctional and environmentally friendly materials,which can be stably applied to purify the actual complicated wastewater.Here,a Ag/Ag/α-Fe_(2)O_(3) heterostructure anchored copper mesh was intentionally synthesized using a facile two-step hydrothermal method.The resultant mesh with superhydrophilicity and underwater superoleophobicity was capable of separating various oil/water mixtures with superior separation efficiency and high permeationflux driven by gravity.Benefiting from the joint effects of the smaller band gap of Ag/α-Fe_(2)O_(3) heterojunction,inherent antibacterial capacity of Ag/α-Fe_(2)O_(3) and Ag nanoparticles,favorable conductive substrate,as well as the hierarchical structure with superwettability,such mesh presented remarkably enhanced degradation capability toward organic dyes under visible light irradiation and antibacterial activity against both Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)compared with the pure Ag/α-Fe_(2)O_(3) coated mesh.Impressively,the mesh exhibited bifunctional water purification performance,in which organic dyes were eliminated simultaneously from water during oil/water separation in onefiltration process.More importantly,this mesh behaved exceptional chemical resistance,mechanical stability and long-term reusability.Therefore,this material with multifunctional integration may hold promising potential for steady water purification in practice.
基金supported by the start-up funds provided to R.E.by the Henry Samueli School of Engineering and the Department of Electrical Engineering and Computer Science at the University of California,Irvine.
文摘The significant impact of stress on health necessitates accurate assessment methods,where traditional questionnaires lack reliability and objectivity.Current advancements like wearables with electrocardiogram(ECG)and galvanic skin response(GSR)sensors face accuracy and artifact challenges.Molecular biosensors detecting cortisol,a critical stress hormone,present a promising solution.However,existing cortisol assays,requiring saliva,urine,or blood,are complex,expensive,and unsuitable for continuous monitoring.Our study introduces a passive,molecularly imprinted polymer-radio-frequency(MIP-RF)wearable sensing system for real-time,non-invasive sweat cortisol assessment.This system is wireless,flexible,battery-free,reusable,environmentally stable,and designed for long-term monitoring,using an inductance-capacitance transducer.The transducer translates cortisol concentrations into resonant frequency shifts with high sensitivity(~160 kHz/(log(μM)))across a physiological range of 0.025–1μM.Integrated with near-field communication(NFC)for wireless and battery-free operation,and threedimensional(3D)-printed microfluidic channel for in-situ sweat collection,it enables daily activity cortisol level tracking.Validation of cortisol circadian rhythm through morning and evening measurements demonstrates its effectiveness in tracking and monitoring sweat cortisol levels.A 28-day stability test and the use of cost-effective 3D nanomaterials printing enhance its economic viability and reusability.This innovation paves the way for a new era in realistic,on-demand health monitoring outside the laboratory,leveraging wearable technology for molecular stress biomarker detection.
基金supported by the Sichuan province Science&Technology Department Crops Breeding Project(2021YFYZ0002)。
文摘The continued expansion of the world population,increasingly inconsistent climate and shrinking agricultural resources present major challenges to crop breeding.Fortunately,the increasing ability to discover and manipulate genes creates new opportunities to develop more productive and resilient cultivars.Many genes have been described in papers as being beneficial for yield increase.However,few of them have been translated into increased yield on farms.In contrast,commercial breeders are facing gene decidophobia,i.e.,puzzled about which gene to choose for breeding among the many identified,a huge chasm between gene discovery and cultivar innovation.The purpose of this paper is to draw attention to the shortfalls in current gene discovery research and to emphasise the need to align with cultivar innovation.The methodology dictates that genetic studies not only focus on gene discovery but also pay good attention to the genetic backgrounds,experimental validation in relevant environments,appropriate crop management,and data reusability.The close of the gaps should accelerate the application of molecular study in breeding and contribute to future global food security.
基金supported by the National Natural Science Foundation of China(21471002)Scientific Research Projects of Universities in Anhui Province(2022AH040135)+1 种基金Natural Science Research Project for Anhui Universities(KJ2021A0509)Anhui Natural Science Foundation(2208085MC83).
文摘Efficient and convenient treatment of industrial dyeing wastewater is of great significance to guarantee human and animal health.This work presented the enhanced catalytic activity at pH 3.0 of laccase immobilized on amino-functionalized ZnFe_(2)O_(4) nanoparticles(ZnFe_(2)O_(4)-laccase)and its application for the degradation of textile dyes.Due to the existence of a large number of oxygen vacancies on the surface of the ZnFe_(2)O_(4) nanoparticles,negative ions accumulated on the magnetic carriers,which resulted in a harsh optimal pH value of the ZnFe_(2)O_(4)-laccase.Laccase activity assays revealed that the ZnFe_(2)O_(4)-laccase possessed superior pH and thermal stabilities,excellent reusability,and noticeable organic solvent tolerance.Meanwhile,the ZnFe_(2)O_(4) laccase presented efficient and sustainable degradation of high concentrations of textile dyes.The initial decoloration efficiencies of malachite green(MG),brilliant green(BG),azophloxine,crystal violet(CV),reactive blue 19(RB19),and procion red MX-5B were approximately 99.1%,95.0%,93.3%,87.4%,86.1%,and 85.3%,respectively.After 10 consecutive reuses,the degradation rates of the textile dyes still maintained about 98.2%,92.5%,83.2%,81.5%,79.8%and 65.9%,respectively.The excellent dye degradation properties indicate that the ZnFe_(2)O_(4)-laccase has a technical application in high concentrations of dyestuff treatment.
文摘As organizations increasingly embrace digital transformation, the integration of modern web technologies like React.js with Business Process Management (BPM) applications has become essential. React components offer flexibility, reusability, and scalability, making them ideal for enhancing user interfaces and driving user engagement within BPM environments. This article explores the benefits, challenges, and best practices of leveraging React components in BPM applications, along with real-world examples of successful implementations.
基金supported by National Natural Science Foundation of China(61425008,61333004,61273054)Top-Notch Young Talents Program of China,and Aeronautical Foundation of China(2015ZA51013)
基金Supported by National Natural Science Foundation of China(Grant No.51805131)Postdoctoral Research Foundation of China(Grant No.2018M640580)Fundamental Research Funds for the Central Universities(CN)Fundamental Research Funds for the Central Universities of China(Grant No.JZ2018HGBZ0155).
文摘There is a consensus in the aerospace field that the development of reusable liquid rockets can effectively reduce the launch expense.The pursuit of a long service life and reutilization highly depends on the bearing components.However,the rolling element bearings(REBs)used in the existing rocket turbopumps present obvious and increasing limitations due to their mechanical contacting mode.For REBs,high rotational speed and long service life are two performance indexes that mutually restrict each other.To go beyond the DN value(the product of the bearing bore and rotational speed)limit of REBs,the major space powers have conducted substantial explorations on the use of new types of bearings to replace the REB.This review discusses,first,the crucial role of bearings in rocket turbopumps and the related structural improvements of REBs.Then,with the prospect of application to the next generation of reusable liquid rocket turbopumps,the bearing candidates investigated by major space powers are summarized comprehensively.These promising alternatives to REBs include fluid-film,foil,and magnetic bearings,together with the novel superconducting compound bearings recently proposed by our team.Our more than ten years of relevant research on fluid-film and magnetic bearings are also introduced.This review is meaningful for the development of long-life and highly reliable bearings to be used in future reusable rocket turbopumps.
基金supported by National Natural Science Foundation of China(No.61262082,No.61462066)Key Project of Chinese Ministry of Education(No.212025)+1 种基金Inner Mongolia Science Foundation for Distinguished Young Scholars(No.2012JQ03)Inner Mongolia Natural Science Foundation of Inner Mongolia(No.2012MS0922)
文摘As an innovative software application mode,Software as a service(SaaS) shows many attractive advantages.Migrating legacy system to SaaS can make outdated systems revived.In the process of migration,the existing valuable components need to be discovered and reused in order that the target system could be developed/integrated more efficiently.An innovative approach is proposed in this paper to extract the reusable components from legacy systems.Firstly,implementation models of legacy system are recovered through reverse engineering.Secondly,function models are derived by vertical clustering,and then logical components are discovered by horizontal clustering based on the function models.Finally,the reusable components with specific feature descriptions are extracted.Through experimental verification,the approach is considered to be efficient in reusable component discovery and to be helpful to migrating legacy system to SaaS.
文摘A highly efficient one-pot synthesis of 1,8-dioxooctahydroxanthenes under solvent-free conditions catalyzed by sulfonic acid covalently anchored onto the surface of silica gel is reported. All types of aldehydes, including aromatic, unsaturated, and heterocyclic, are used. The silica gel/sulfonic acid catalyst (SiO2-R-SO3H) is completely heterogeneous and can be recycled.
基金supported by National Key Research and Development Program of China (2020YFC0844800)the Science and Technology Planning Project of Beijing (Z201100007520006)
文摘The coronavirus disease 2019(COVID-19)pandemic has caused a surge in demand for face masks,with the massive consumption of masks leading to an increase in resource-related and environmental con-cerns.In this work,we fabricated meltblown polypropylene(mb-PP)-based high-performance planar face masks and investigated the effects of six commonly used disinfection methods and various mask-wearing periods on the reusability of these masks.The results show that,after three cycles of treatment using hot water at 70℃ for 30 min,which is one of the most scalable,user-friendly methods for viral disinfection,the particle filtration efficiency(PFE)of the mask remained almost unchanged.After mask wearing for 24 h and subsequent disinfection using the same treatment procedures,the PFE decreased to 91.3%;the average number of bacterial and fungal colonies was assessed to be 9.2 and 51.6 colony-forming units per gram(CFU∙g^(-1)),respectively;and coliform and pyogenic bacteria were not detected.Both the PFE and the microbial indicators are well above the standard for reusable masks after disinfection.Schlieren pho-tography was then used to assess the capabilities of used and disinfected masks during use;it showed that the masks exhibit a high performance in suppressing the spread of breathed air.
基金supported by the National Natural Science Foundation of China(61174221)
文摘Reentry attitude control for reusable launch vehicles (RLVs) is challenging due to the characters of fast nonlinear dy- namics and large flight envelop. A hierarchical structured attitude control system for an RLV is proposed and an unpowered RLV con- trol model is developed. Then, the hierarchical structured control frame consisting of attitude controller, compound control strategy and control allocation is presented. At the core of the design is a robust adaptive control (RAC) law based on dual loop time-scale separation. A radial basis function neural network (RBFNN) is implemented for compensation of uncertain model dynamics and external disturbances in the inner loop. And then the robust op- timization is applied in the outer loop to guarantee performance robustness. The overall control design frame retains the simplicity in design while simultaneously assuring the adaptive and robust performance. The hierarchical structured robust adaptive con- troller (HSRAC) incorporates flexibility into the design with regard to controller versatility to various reentry mission requirements. Simulation results show that the improved tracking performance is achieved by means of RAC.
基金supported by the National Basic Research Program of China(973 Program)(2012CB720003)the National Natural Science Foundation of China(10772011)
文摘To be close to the practical flight process and increase the precision of optimal trajectory, a six-degree-offreedom(6-DOF) trajectory is optimized for the reusable launch vehicle(RLV) using the Gauss pseudospectral method(GPM). Different from the traditional trajectory optimization problem which generally considers the RLV as a point mass, the coupling between translational dynamics and rotational dynamics is taken into account. An optimization problem is formulated to minimize a performance index subject to 6-DOF equations of motion, including translational and rotational dynamics. A two-step optimal strategy is then introduced to reduce the large calculations caused by multiple variables and convergence confinement in 6-DOF trajectory optimization. The simulation results demonstrate that the 6-DOF trajectory optimal strategy for RLV is feasible.
文摘Based on current research,the development trend of reusable liquid rocket engines was analyzed.Key technologies and research focuses of the reusable liquid rocket engine have been analyzed and summarized,and then suggestions on the development of future key technologies are proposed.