期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Enabling rechargeable Li-MnO_(2) batteries using ether electrolytes 被引量:1
1
作者 Dawei Xia Hongpeng Gao +5 位作者 Mingqian Li John Holoubek Qizhang Yan Yijie Yin Panpan Xu Zheng Chen 《SmartMat》 2023年第5期131-138,共8页
A low-carbon future demands more affordable batteries utilizing abundant elements with sustainable end-of-life battery management.Despite the economic and environmental advantages of Li-MnO_(2)batteries,their applica-... A low-carbon future demands more affordable batteries utilizing abundant elements with sustainable end-of-life battery management.Despite the economic and environmental advantages of Li-MnO_(2)batteries,their applica-tion so far has been largely constrained to primary batteries.Here,we demonstrate that one of the major limiting factors preventing the stable cycling of Li-MnO_(2)batteries,Mn dissolution,can be effectively mitigated by employing a common ether electrolyte,1 mol/L lithium bis(trifluorometha-nesulfonyl)imide(LiTFSI)in 1,3-dioxane(DOL)/1,2-dimethoxyethane(DME).We discover that the suppression of this dissolution enables highly reversible cycling of the MnO_(2)cathode regardless of the synthesized phase and morphology.Moreover,we find that both the LiPF_(6)salt and carbonate solvents present in conventional electrolytes are responsible for previous cycling challenges.The ether electrolyte,paired with MnO_(2)cathodes is able to demonstrate stable cycling performance at various rates,even at elevated temperature such as 60℃.Our discovery not only represents a defining step in Li-MnO_(2)batteries with extended life but provides design criteria of electrolytes for vast manganese-based cathodes in rechargeable batteries. 展开更多
关键词 ether-based electrolytes Li-MnO BATTERIES Mn deposition Mn dissolution reuse of primary batteries
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部