Audio signal separation is an open and challenging issue in the classical“Cocktail Party Problem”.Especially in a reverberation environment,the separation of mixed signals is more difficult separated due to the infl...Audio signal separation is an open and challenging issue in the classical“Cocktail Party Problem”.Especially in a reverberation environment,the separation of mixed signals is more difficult separated due to the influence of reverberation and echo.To solve the problem,we propose a determined reverberant blind source separation algorithm.The main innovation of the algorithm focuses on the estimation of the mixing matrix.A new cost function is built to obtain the accurate demixing matrix,which shows the gap between the prediction and the actual data.Then,the update rule of the demixing matrix is derived using Newton gradient descent method.The identity matrix is employed as the initial demixing matrix for avoiding local optima problem.Through the real-time iterative update of the demixing matrix,frequency-domain sources are obtained.Then,time-domain sources can be obtained using an inverse short-time Fourier transform.Experi-mental results based on a series of source separation of speech and music mixing signals demonstrate that the proposed algorithm achieves better separation performance than the state-of-the-art methods.In particular,it has much better superiority in the highly reverberant environment.展开更多
基金This research was partially supported by the National Natural Science Foundation of China under Grant 52105268Natural Science Foundation of Guangdong Province under Grant 2022A1515011409+2 种基金Key Platforms and Major Scientific Research Projects of Universities in Guangdong under Grants 2019KTSCX161 and 2019KTSCX165Key Projects of Natural Science Research Projects of Shaoguan University under Grants SZ2020KJ02 and SZ2021KJ04the Science and Technology Program of Shaoguan City of China under Grants 2019sn056,200811094530423,200811094530805,and 200811094530811.
文摘Audio signal separation is an open and challenging issue in the classical“Cocktail Party Problem”.Especially in a reverberation environment,the separation of mixed signals is more difficult separated due to the influence of reverberation and echo.To solve the problem,we propose a determined reverberant blind source separation algorithm.The main innovation of the algorithm focuses on the estimation of the mixing matrix.A new cost function is built to obtain the accurate demixing matrix,which shows the gap between the prediction and the actual data.Then,the update rule of the demixing matrix is derived using Newton gradient descent method.The identity matrix is employed as the initial demixing matrix for avoiding local optima problem.Through the real-time iterative update of the demixing matrix,frequency-domain sources are obtained.Then,time-domain sources can be obtained using an inverse short-time Fourier transform.Experi-mental results based on a series of source separation of speech and music mixing signals demonstrate that the proposed algorithm achieves better separation performance than the state-of-the-art methods.In particular,it has much better superiority in the highly reverberant environment.