A new analytical model for reverse characteristics of 4H-SiC merged PN Sehottky diodes (MPS or 3BS) is developed. To accurately calculate the reverse characteristics of the 4H SiC MPS diode, the relationship between...A new analytical model for reverse characteristics of 4H-SiC merged PN Sehottky diodes (MPS or 3BS) is developed. To accurately calculate the reverse characteristics of the 4H SiC MPS diode, the relationship between the electric field at the Schottky contact and the reverse bias is analytically established by solving the cylindrical Poisson equation after the channel has pinched off. The reverse current density calculated from the Wentzel-Kramers-Brillouin (WKB) theory is verified by comparing it with the experimental result, showing that they are in good agreement with each other. Moreover, the effects of P-region spacing (S) and P-junction depth (Xj) on the characteristics of 4H-SiC MPS are analysed, and are particularly useful for optimizing the design of the high voltage MPS diodes.展开更多
To simulate steady airflows inside of wall-flow diesel particulate filters (DPF) with different reverse blowing pipes collocation, a mathematical model of the flow in a DPF is established by an equivalent continuum ...To simulate steady airflows inside of wall-flow diesel particulate filters (DPF) with different reverse blowing pipes collocation, a mathematical model of the flow in a DPF is established by an equivalent continuum approach. The experimental results agree well with the theoretical values calculated from the model. Simulation shows that the velocity and the pressure distribution of the filters in the regenerative process are key factors to the filter's regeneration. How to decrease the mal-distribution of the flow in the filter and how to achieve the better regenerative performance at the least cost of air consumption in the regenerative process are the ultimate goals of the study. Calculation and experiments show that the goals can be realized through adjusting the angle of two reverse blowing pipes and their relative location suitably.展开更多
A new SiC superjunction power MOSFET device using high-k insulator and p-type pillar with an integrated Schottky barrier diode(Hk-SJ-SBD MOSFET)is proposed,and has been compared with the SiC high-k MOSFET(Hk MOSFET),S...A new SiC superjunction power MOSFET device using high-k insulator and p-type pillar with an integrated Schottky barrier diode(Hk-SJ-SBD MOSFET)is proposed,and has been compared with the SiC high-k MOSFET(Hk MOSFET),SiC superjuction MOSFET(SJ MOSFET)and the conventional SiC MOSFET in this article.In the proposed SiC Hk-SJ-SBD MOSFET,under the combined action of the p-type region and the Hk dielectric layer in the drift region,the concentration of the N-drift region and the current spreading layer can be increased to achieve an ultra-low specific on-resistance(Ron,sp).The integrated Schottky barrier diode(SBD)also greatly improves the reverse recovery performance of the device.TCAD simulation results indicate that the Ron,sp of the proposed SiC Hk-SJ-SBD MOSFET is 0.67 mΩ·cm^(2)with a 2240 V breakdown voltage(BV),which is more than 72.4%,23%,5.6%lower than that of the conventional SiC MOSFET,Hk SiC MOSFET and SJ SiC MOSFET with the 1950,2220,and 2220V BV,respectively.The reverse recovery time and reverse recovery charge of the proposed MOSFET is 16 ns and18 nC,which are greatly reduced by more than 74%and 94%in comparison with those of all the conventional SiC MOSFET,Hk SiC MOSFET and SJ SiC MOSFET,due to the integrated SBD in the proposed MOSFET.And the trade-off relationship between the Ron,sp and the BV is also significantly improved compared with that of the conventional MOSFET,Hk MOSFET and SJ MOSFET as well as the MOSFETs in other previous literature,respectively.In addition,compared with conventional SJ SiC MOSFET,the proposed SiC MOSFET has better immunity to charge imbalance,which may bring great application prospects.展开更多
Several parameters of a commercial Si-based Schottky barrier diode (SBD) with unknown metal material and semiconductor-type have been investigated in this work from dark forward and reverse I-V characteristics in the ...Several parameters of a commercial Si-based Schottky barrier diode (SBD) with unknown metal material and semiconductor-type have been investigated in this work from dark forward and reverse I-V characteristics in the temperature (T) range of [274.5 K - 366.5 K]. Those parameters include the reverse saturation current (I<sub>s</sub>), the ideality factor (n), the series and the shunt resistances (R<sub>s</sub> and R<sub>sh</sub>), the effective and the zero bias barrier heights (Φ<sub>B</sub> and Φ<sub>B0</sub>), the product of the electrical active area (A) and the effective Richardson constant (A**), the built-in potential (V<sub>bi</sub>), together with the semiconductor doping concentration (N<sub>A</sub> or N<sub>D</sub>). Some of them have been extracted by using two or three different methods. The main features of each approach have been clearly stated. From one parameter to another, results have been discussed in terms of structure performance, comparison on one another when extracted from different methods, accordance or discordance with data from other works, and parameter’s temperature or voltage dependence. A comparison of results on Φ<sub>B</sub>, ΦB0</sub>, n and N<sub>A</sub> or N<sub>D</sub> parameters with some available data in literature for the same parameters, has especially led to clear propositions on the identity of the analyzed SBD’s metal and semiconductor-type.展开更多
A new structure of 4H-silicon carbide (SIC) merged PiN-Schottky (MPS) diodes with offset field-plate (FP) as edge termination is developed. To understand the influences of 4H-SiC MPS diodes with offset FP on the...A new structure of 4H-silicon carbide (SIC) merged PiN-Schottky (MPS) diodes with offset field-plate (FP) as edge termination is developed. To understand the influences of 4H-SiC MPS diodes with offset FP on the characteristics, simulations have been done by using ISE TCAD. Related factors of offset FP have been studied as well to optimise the reverse characteristics of 4H SiC MPS diodes. The simulation results show that the device using offset FP can create a higher blocking voltage under reverse bias as compared with that using field guard rings. Besides, the offset FP does not cause any extra steps in the manufacture of MPS diodes.展开更多
基金Project supported by the Xi’an Applied Materials Innovation Fund (Grant No XA-AM-200702)
文摘A new analytical model for reverse characteristics of 4H-SiC merged PN Sehottky diodes (MPS or 3BS) is developed. To accurately calculate the reverse characteristics of the 4H SiC MPS diode, the relationship between the electric field at the Schottky contact and the reverse bias is analytically established by solving the cylindrical Poisson equation after the channel has pinched off. The reverse current density calculated from the Wentzel-Kramers-Brillouin (WKB) theory is verified by comparing it with the experimental result, showing that they are in good agreement with each other. Moreover, the effects of P-region spacing (S) and P-junction depth (Xj) on the characteristics of 4H-SiC MPS are analysed, and are particularly useful for optimizing the design of the high voltage MPS diodes.
基金This project is supported by National Hi-tech Research and DevelopmentProgram of China (863 Program, No.2003AA643010B).
文摘To simulate steady airflows inside of wall-flow diesel particulate filters (DPF) with different reverse blowing pipes collocation, a mathematical model of the flow in a DPF is established by an equivalent continuum approach. The experimental results agree well with the theoretical values calculated from the model. Simulation shows that the velocity and the pressure distribution of the filters in the regenerative process are key factors to the filter's regeneration. How to decrease the mal-distribution of the flow in the filter and how to achieve the better regenerative performance at the least cost of air consumption in the regenerative process are the ultimate goals of the study. Calculation and experiments show that the goals can be realized through adjusting the angle of two reverse blowing pipes and their relative location suitably.
基金supported in part by the National Natural Science Foundation of China(Grant No.61974015)Key R&D Project of Science and Technology Plan of the Sichuan province(Grant No.2021YFG0139)the Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices of China(Grant No.KFJJ201806)。
文摘A new SiC superjunction power MOSFET device using high-k insulator and p-type pillar with an integrated Schottky barrier diode(Hk-SJ-SBD MOSFET)is proposed,and has been compared with the SiC high-k MOSFET(Hk MOSFET),SiC superjuction MOSFET(SJ MOSFET)and the conventional SiC MOSFET in this article.In the proposed SiC Hk-SJ-SBD MOSFET,under the combined action of the p-type region and the Hk dielectric layer in the drift region,the concentration of the N-drift region and the current spreading layer can be increased to achieve an ultra-low specific on-resistance(Ron,sp).The integrated Schottky barrier diode(SBD)also greatly improves the reverse recovery performance of the device.TCAD simulation results indicate that the Ron,sp of the proposed SiC Hk-SJ-SBD MOSFET is 0.67 mΩ·cm^(2)with a 2240 V breakdown voltage(BV),which is more than 72.4%,23%,5.6%lower than that of the conventional SiC MOSFET,Hk SiC MOSFET and SJ SiC MOSFET with the 1950,2220,and 2220V BV,respectively.The reverse recovery time and reverse recovery charge of the proposed MOSFET is 16 ns and18 nC,which are greatly reduced by more than 74%and 94%in comparison with those of all the conventional SiC MOSFET,Hk SiC MOSFET and SJ SiC MOSFET,due to the integrated SBD in the proposed MOSFET.And the trade-off relationship between the Ron,sp and the BV is also significantly improved compared with that of the conventional MOSFET,Hk MOSFET and SJ MOSFET as well as the MOSFETs in other previous literature,respectively.In addition,compared with conventional SJ SiC MOSFET,the proposed SiC MOSFET has better immunity to charge imbalance,which may bring great application prospects.
文摘Several parameters of a commercial Si-based Schottky barrier diode (SBD) with unknown metal material and semiconductor-type have been investigated in this work from dark forward and reverse I-V characteristics in the temperature (T) range of [274.5 K - 366.5 K]. Those parameters include the reverse saturation current (I<sub>s</sub>), the ideality factor (n), the series and the shunt resistances (R<sub>s</sub> and R<sub>sh</sub>), the effective and the zero bias barrier heights (Φ<sub>B</sub> and Φ<sub>B0</sub>), the product of the electrical active area (A) and the effective Richardson constant (A**), the built-in potential (V<sub>bi</sub>), together with the semiconductor doping concentration (N<sub>A</sub> or N<sub>D</sub>). Some of them have been extracted by using two or three different methods. The main features of each approach have been clearly stated. From one parameter to another, results have been discussed in terms of structure performance, comparison on one another when extracted from different methods, accordance or discordance with data from other works, and parameter’s temperature or voltage dependence. A comparison of results on Φ<sub>B</sub>, ΦB0</sub>, n and N<sub>A</sub> or N<sub>D</sub> parameters with some available data in literature for the same parameters, has especially led to clear propositions on the identity of the analyzed SBD’s metal and semiconductor-type.
基金Project supported by Applied Materials Innovation Fund (Grant No. XA-AM-200702)the 13115 Innovation Engineering of Shaanxi Province,China (Grant No. 2008ZDKG-30)
文摘A new structure of 4H-silicon carbide (SIC) merged PiN-Schottky (MPS) diodes with offset field-plate (FP) as edge termination is developed. To understand the influences of 4H-SiC MPS diodes with offset FP on the characteristics, simulations have been done by using ISE TCAD. Related factors of offset FP have been studied as well to optimise the reverse characteristics of 4H SiC MPS diodes. The simulation results show that the device using offset FP can create a higher blocking voltage under reverse bias as compared with that using field guard rings. Besides, the offset FP does not cause any extra steps in the manufacture of MPS diodes.