On January 1, 2024 at 16:10:09 JST, an M_(j) 7.6 earthquake struck the Noto Peninsula in the southern part of the Sea of Japan. This location has been experiencing an earthquake swarm for more than three years. Here, ...On January 1, 2024 at 16:10:09 JST, an M_(j) 7.6 earthquake struck the Noto Peninsula in the southern part of the Sea of Japan. This location has been experiencing an earthquake swarm for more than three years. Here, we provide an overview of this earthquake, focusing on the slip distribution of the mainshock and its relationship with the preceding swarm. We also reexamined the source areas of other large earthquakes that occurred around the Sea of Japan in the past and compared them with the Matsushiro earthquake swarm in central Japan from1964 to 1968. The difference between the Matsushiro earthquake swarm and the Noto earthquake swarm is the surrounding stress field. The Matsushiro earthquake swarm was a strike-slip stress field, so the cracks in the crust were oriented vertically. This allowed fluids seeped from the depths to rise and flow out to the surface. On the other hand, the Noto area was a reverse fault stress field. Therefore, the cracks in the earth's crust were oriented horizontally. Fluids flowing underground in deep areas could not rise and spread over a wide area in the horizontal plane. This may have caused a large amount of fluid to accumulate underground, triggering a large earthquake. Although our proposed mechanism does not take into account other complex geological conditions into consideration, it may provide a simple way to explain why the Noto swarm is followed by a large earthquake while other swarms are not.展开更多
In this paper, we investigate the precursors of large earthquakes in the eastern region of Taiwan by means of the reverse tracing of precursors. We discuss the parameters which are suitable for the seismic chains and ...In this paper, we investigate the precursors of large earthquakes in the eastern region of Taiwan by means of the reverse tracing of precursors. We discuss the parameters which are suitable for the seismic chains and intermedi- ate-term patterns in this region and obtain the threshold of the patterns. Applying the linear discriminate method to the intermediate-term patterns of seismic chains, we present an approach for exploring the precursors of large earthquakes. The results show that this method can reduce the false alarm rate for large earthquakes in this region, and the reverse tracing of precursors can be applied to the eastern region of Taiwan.展开更多
The 2018 M_(W)6.7 Iburi earthquake shocked the eastern Iburi region to the west of the Hidaka Collision Zone in Hokkaido,which is a destructive inland earthquake.We resolved the kinematic rupture process of the event ...The 2018 M_(W)6.7 Iburi earthquake shocked the eastern Iburi region to the west of the Hidaka Collision Zone in Hokkaido,which is a destructive inland earthquake.We resolved the kinematic rupture process of the event by combining strong motions(SM)and synthetic aperture radar(SAR)images in a joint inversion.The results reveal that the duration of the whole rupture is about 17s,yielding a total seismic moment of 1.4×10^(19)N·m(M_(W)=6.7).The main slip area is located at a depth of approximately 24 km with a peak slip of~0.8m above the hypocenter.The comparison with the regional velocity model shows the earthquake was initiated in the upper mantle,while the majority of slips are located in the lower crust,which is an“aseismic”domain in the typical sandwich model.The location of the major slip area is consistent with a high-conductivity volume.We proposed a mechanism of low frictional property(<0.3)produced by high pore pressure to explain the abnormal high dip angle and centroid depth located in the ductile lower-crust.Aftershocks are distributed in areas where the Coulomb frictional stress increases due to co-seismic displacement with a mechanism conjugating to the mainshock.展开更多
The 2008-05-12 Wenchuan mud-volcano-earthquake was accompanied with eruption of a huge volume of gas and stone,revealing that earthquakes generally result from instant reverse phase explosion of supercritical water(SC...The 2008-05-12 Wenchuan mud-volcano-earthquake was accompanied with eruption of a huge volume of gas and stone,revealing that earthquakes generally result from instant reverse phase explosion of supercritical water(SCW) at the supercritical point.In the deep parts of the crust and mantle there still exists a large amount of supercritical water equivalent in order of magnitude to that of the Earth's hydrosphere.Soft fluids which exist in the MOHO at the top of the upper mantle are the so-called deep supercritical fluids(SCWD).Supercritical water(SCW) has n×103 times strong capability to dissolve gas.Its viscosity is extremely low and its diffusivity is extremely strong.Therefore,it can naturally migrate toward a region with relatively negative pressure.In the steep break zone of the MOHO at the 57-65 km depth beneath the earthquake belt,due to mutation of overburden pressure,SCWD can automatically separate out CaSiO3 and other inorganic salts,evolving into the SCW(H2O-CO2-CH4O system.In going upwards to the 10-20-km depth of the crust SCW will be accumulated as an earthquake-pregnant reservoir in the broken terrain.The phase-transition heat of SCW is estimated at 606.62 kJ/kg and the reverse phasing kinetic energy is 2350.8 kJ/kg.When automatic exhaust at the time of decompression reaches the critical pressure(Pc),the instant explosion reverse phase will be normal-state air water.It will release a huge volume of energy and high-kinetic-energy gas which has been expanded by a factor of 1000,leading to the breaking of the country rocks overlying the earthquake-pregnant reservoir,thus giving rise to a Ms 8.0 earthquake.As a result,there were formed eruptive and air-driven(pneumatic) debris flows whose volumatric flow rate reaches n×1014 m3/s,and their force greatly exceeds the power of INT explosive of the same equivalent value.展开更多
In this paper, the time reversal processes of impulse response of crust are simulated by means of a dynamical finite element method (DFEM). The results indicate that a small undulating load during a long period may ca...In this paper, the time reversal processes of impulse response of crust are simulated by means of a dynamical finite element method (DFEM). The results indicate that a small undulating load during a long period may cause a focused brevity impact in a chaos-response system. The physical principle for this phenomenon is that the wave interferes or multiples superposition. Based on this knowledge, a new view toward the mechanism for preparing and triggering an earthquake is proposed. Finally, an interpretation of crust response to the sea tides is given.展开更多
Clustering earthquakes refer to the seismic events that occur closely with each other in time and space. Because their overlapping waveform records make it difficult to pick the first arrivals, the hypocenters of clus...Clustering earthquakes refer to the seismic events that occur closely with each other in time and space. Because their overlapping waveform records make it difficult to pick the first arrivals, the hypocenters of clustering earthquakes cannot be determined accurately by traveltime location methods. Here we apply a reverse-time imaging (RTI) method to map clustering earthquakes. Taking the advantage of directly using waveforms, the RTI method is capable to map either a single small earthquake or some densely distributed clustering earthquakes beneath a 2-D seismic array. In 3-D case the RTI method is successfully applied to locate the long-offset doublet earthquakes using the data from a set of sparsely distributed surface stations. However, for the same acquisition geometry, the RTI encounters challenges in mapping densely distributed clustering earthquakes. While it is obvious that improving the mapping of clustering earthquakes requires a denser receiver network with wider range of illumination angles, it is necessary to verify the actual resolution of the RTI method with synthetic data. In our study area in the Three Gorges region, our tests in 3-D case suggest that some events beneath the linear aligned sub-arrays have reasonable resolution.展开更多
基金supported by the National Nature Science Foundation of China (No. 42130312)。
文摘On January 1, 2024 at 16:10:09 JST, an M_(j) 7.6 earthquake struck the Noto Peninsula in the southern part of the Sea of Japan. This location has been experiencing an earthquake swarm for more than three years. Here, we provide an overview of this earthquake, focusing on the slip distribution of the mainshock and its relationship with the preceding swarm. We also reexamined the source areas of other large earthquakes that occurred around the Sea of Japan in the past and compared them with the Matsushiro earthquake swarm in central Japan from1964 to 1968. The difference between the Matsushiro earthquake swarm and the Noto earthquake swarm is the surrounding stress field. The Matsushiro earthquake swarm was a strike-slip stress field, so the cracks in the crust were oriented vertically. This allowed fluids seeped from the depths to rise and flow out to the surface. On the other hand, the Noto area was a reverse fault stress field. Therefore, the cracks in the earth's crust were oriented horizontally. Fluids flowing underground in deep areas could not rise and spread over a wide area in the horizontal plane. This may have caused a large amount of fluid to accumulate underground, triggering a large earthquake. Although our proposed mechanism does not take into account other complex geological conditions into consideration, it may provide a simple way to explain why the Noto swarm is followed by a large earthquake while other swarms are not.
文摘In this paper, we investigate the precursors of large earthquakes in the eastern region of Taiwan by means of the reverse tracing of precursors. We discuss the parameters which are suitable for the seismic chains and intermedi- ate-term patterns in this region and obtain the threshold of the patterns. Applying the linear discriminate method to the intermediate-term patterns of seismic chains, we present an approach for exploring the precursors of large earthquakes. The results show that this method can reduce the false alarm rate for large earthquakes in this region, and the reverse tracing of precursors can be applied to the eastern region of Taiwan.
基金State Natural Scientific Foundation of China (No. 49734240) the China Seismological Bureau in the Project 95-04-09 and the Xinjiang Uygur Autonomous Region in the National 305 Project 96-915-07-03.
基金This work is supported by the National Key R&D Program of China(No.2018YFC1504203)the National Natural Science Foundation of China(No.42021003).
文摘The 2018 M_(W)6.7 Iburi earthquake shocked the eastern Iburi region to the west of the Hidaka Collision Zone in Hokkaido,which is a destructive inland earthquake.We resolved the kinematic rupture process of the event by combining strong motions(SM)and synthetic aperture radar(SAR)images in a joint inversion.The results reveal that the duration of the whole rupture is about 17s,yielding a total seismic moment of 1.4×10^(19)N·m(M_(W)=6.7).The main slip area is located at a depth of approximately 24 km with a peak slip of~0.8m above the hypocenter.The comparison with the regional velocity model shows the earthquake was initiated in the upper mantle,while the majority of slips are located in the lower crust,which is an“aseismic”domain in the typical sandwich model.The location of the major slip area is consistent with a high-conductivity volume.We proposed a mechanism of low frictional property(<0.3)produced by high pore pressure to explain the abnormal high dip angle and centroid depth located in the ductile lower-crust.Aftershocks are distributed in areas where the Coulomb frictional stress increases due to co-seismic displacement with a mechanism conjugating to the mainshock.
文摘The 2008-05-12 Wenchuan mud-volcano-earthquake was accompanied with eruption of a huge volume of gas and stone,revealing that earthquakes generally result from instant reverse phase explosion of supercritical water(SCW) at the supercritical point.In the deep parts of the crust and mantle there still exists a large amount of supercritical water equivalent in order of magnitude to that of the Earth's hydrosphere.Soft fluids which exist in the MOHO at the top of the upper mantle are the so-called deep supercritical fluids(SCWD).Supercritical water(SCW) has n×103 times strong capability to dissolve gas.Its viscosity is extremely low and its diffusivity is extremely strong.Therefore,it can naturally migrate toward a region with relatively negative pressure.In the steep break zone of the MOHO at the 57-65 km depth beneath the earthquake belt,due to mutation of overburden pressure,SCWD can automatically separate out CaSiO3 and other inorganic salts,evolving into the SCW(H2O-CO2-CH4O system.In going upwards to the 10-20-km depth of the crust SCW will be accumulated as an earthquake-pregnant reservoir in the broken terrain.The phase-transition heat of SCW is estimated at 606.62 kJ/kg and the reverse phasing kinetic energy is 2350.8 kJ/kg.When automatic exhaust at the time of decompression reaches the critical pressure(Pc),the instant explosion reverse phase will be normal-state air water.It will release a huge volume of energy and high-kinetic-energy gas which has been expanded by a factor of 1000,leading to the breaking of the country rocks overlying the earthquake-pregnant reservoir,thus giving rise to a Ms 8.0 earthquake.As a result,there were formed eruptive and air-driven(pneumatic) debris flows whose volumatric flow rate reaches n×1014 m3/s,and their force greatly exceeds the power of INT explosive of the same equivalent value.
基金State Natural Science Foundation (49834002) and the science foundation of HUST (J151005).
文摘In this paper, the time reversal processes of impulse response of crust are simulated by means of a dynamical finite element method (DFEM). The results indicate that a small undulating load during a long period may cause a focused brevity impact in a chaos-response system. The physical principle for this phenomenon is that the wave interferes or multiples superposition. Based on this knowledge, a new view toward the mechanism for preparing and triggering an earthquake is proposed. Finally, an interpretation of crust response to the sea tides is given.
基金supported by the National Natural Science Foundation of China (Nos.41230318,41204087,and 41304109)the Natural Science Foundation of Shandong Province (No.ZR2014DM006)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20130132110023) the Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology,Ministry of Land and Resources of China (No.MRE201303)
文摘Clustering earthquakes refer to the seismic events that occur closely with each other in time and space. Because their overlapping waveform records make it difficult to pick the first arrivals, the hypocenters of clustering earthquakes cannot be determined accurately by traveltime location methods. Here we apply a reverse-time imaging (RTI) method to map clustering earthquakes. Taking the advantage of directly using waveforms, the RTI method is capable to map either a single small earthquake or some densely distributed clustering earthquakes beneath a 2-D seismic array. In 3-D case the RTI method is successfully applied to locate the long-offset doublet earthquakes using the data from a set of sparsely distributed surface stations. However, for the same acquisition geometry, the RTI encounters challenges in mapping densely distributed clustering earthquakes. While it is obvious that improving the mapping of clustering earthquakes requires a denser receiver network with wider range of illumination angles, it is necessary to verify the actual resolution of the RTI method with synthetic data. In our study area in the Three Gorges region, our tests in 3-D case suggest that some events beneath the linear aligned sub-arrays have reasonable resolution.
基金partially supported by the research grants from Spark Program of Earthquake Sciences(XH213703Y)National Institute of Natural Hazards,Ministry of Emergency Management of China(No.ZDJ2020-09 and No.ZDJ2019-16).