This article examines the influence of seawater temperature and total dissolved solids (TDS) on reverse osmosis (RO) desalination in the Arabian Gulf region, with a focus on the impact of climate change. The study hig...This article examines the influence of seawater temperature and total dissolved solids (TDS) on reverse osmosis (RO) desalination in the Arabian Gulf region, with a focus on the impact of climate change. The study highlights the changes in seawater temperature and TDS levels over the years and discusses their effects on the efficiency and productivity of RO desalination plants. It emphasizes the importance of monitoring TDS levels and controlling seawater temperature to optimize water production. The article also suggests various solutions, including intensive pre-treatment, development of high-performance membranes, exploration of alternative water sources, and regulation of discharges into the Gulf, to ensure sustainable water supply in the face of rising TDS levels and seawater temperature. Further research and comprehensive monitoring are recommended to understand the implications of these findings and develop effective strategies for the management of marine resources in the Arabian Gulf.展开更多
Brackish water (BW) desalination is a primary path to relieve the shortage of water. As one of the BW desalination methods, reverse osmosis (RO) technology has advantage for both technology and process procedure. The ...Brackish water (BW) desalination is a primary path to relieve the shortage of water. As one of the BW desalination methods, reverse osmosis (RO) technology has advantage for both technology and process procedure. The expounding of this research studied or reviewed recent years, reverse osmosis membrane, energy recovery, new energy and application technology in BW desalination of RO at home and abroad. Wind power and solar energy can be combined with energy recovery device for RO. The research also explains that BW desalination by RO is practical and feasible in some areas in China.展开更多
Reverse Osmosis (RO) desalination plants are highly nonlinear multi-input-multioutput systems that are affected by uncertainties, constraints and some physical phenomena such as membrane fouling that are mathematicall...Reverse Osmosis (RO) desalination plants are highly nonlinear multi-input-multioutput systems that are affected by uncertainties, constraints and some physical phenomena such as membrane fouling that are mathematically difficult to describe. Such systems require effective control strategies that take these effects into account. Such a control strategy is the nonlinear model predictive (NMPC) controller. However, an NMPC depends very much on the accuracy of the internal model used for prediction in order to maintain feasible operating conditions of the RO desalination plant. Recurrent Neural Networks (RNNs), especially the Long-Short-Term Memory (LSTM) can capture complex nonlinear dynamic behavior and provide long-range predictions even in the presence of disturbances. Therefore, in this paper an NMPC for a RO desalination plant that utilizes an LSTM as the predictive model will be presented. It will be tested to maintain a given permeate flow rate and keep the permeate concentration under a certain limit by manipulating the feed pressure. Results show a good performance of the system.展开更多
Fouling phenomenon is considered among the major reasons that cause significant increase of operating cost of desalination plants equipped with reverse osmosis(RO)membranes.This phenomenon is studied in the present wo...Fouling phenomenon is considered among the major reasons that cause significant increase of operating cost of desalination plants equipped with reverse osmosis(RO)membranes.This phenomenon is studied in the present work in the case of RO polyamide aromatic membranes using model seawater containing inorganic salts and colloidal compounds.Different solubility conditions of CaCO3 and CaSO4 were applied to study RO performances with and without colloid presence.During experiments,the membrane permeate fluxes were continuously monitored.Moreover,studies of chemical composition,structure,and morphology of the materials deposited on the membrane surface were conducted using energy dispersive microanalysis(EDS)X-ray diffraction and scanning electronic microscopy(SEM).Results show that in conditions of calcium carbonate oversaturation there is a reduction in the permeate flow of 11.2%due to fouling of the membrane by the precipitation of this compound.While in the same conditions of calcium sulphate oversaturation the reduction of the flow is 5%,so we can conclude that in conditions of oversaturation of both salts,calcium carbonate produces a greater fouling of the membrane that in its view causes greater decrease in the flow of permeate.All this based on the results of the test with both salts in oversaturated conditions.Resulting in the formation of calcite and gypsum crystals onto the membranes as XRD analyses stated.Additional presence of colloidal silica in those conditions intensifies strongly the fouling,leading until to 24.1%of permeate flux decrease.展开更多
Seawater desalination has been peoples fond dream since ancient times, the dream is now becoming a reality. This paper presents a brief development history of reverse osmosis. Much attention was paid to innovative dev...Seawater desalination has been peoples fond dream since ancient times, the dream is now becoming a reality. This paper presents a brief development history of reverse osmosis. Much attention was paid to innovative development in membranes, modules, equipments and applied technology, including asymmetric and composite membranes, spiral-wound element and hollow fiber module, energy recovery equipments and different technological processes. The extension of reverse osmosis, such as desalination, pre-concentration, integrated processes and nanofiltration, is also briefly mentioned.展开更多
Reverse osmosis (RO) is proved to be the most reliable, cost effective, and energy efficient in producing fresh water compared to other desalination technologies. It is the fastest-growing desalination technology wi...Reverse osmosis (RO) is proved to be the most reliable, cost effective, and energy efficient in producing fresh water compared to other desalination technologies. It is the fastest-growing desalination technology with a greater number of installations around the world. The economic and technical performance of a medium-capacity RO desalination plant (2,000 m^3/day) proposed to be installed in Umm Qasr city south of Basra, Iraq is analyzed using DEEP-3.2 software created by the International Atomic Energy Agency (IAEA). This port city is located on the Gulf shore and does not have any fresh water resources. The analysis shows that the cost of fresh water produced by this plant is US$0.986/m^3 with a good quality of fresh water (279 ppm), which is a reasonable price for this remote area. The analysis also shows an increase in water production cost of about 12% at increased electricity price from 0.06 to 0.1 US$/kWh, 53% when the seawater salinity increased from 35,000 to 45,000 ppm, 2.5% when the seawater temperature decreased from 33 ℃ to 20 ℃, and 0.71% when the interest rate increased from 0% to 5%. Pumping fresh water from the Basra purification plant (located 175 km north of Umm Qasr) is 22.16 times the cost and 236.7% poorer quality than the fresh water produced by the RO plant.展开更多
The rising of the world’s population leads automatically to the rising of water demand. As a consequence the lack of drinking water increases. Currently, approximately 1.2 billion people globally (one-sixth of the wo...The rising of the world’s population leads automatically to the rising of water demand. As a consequence the lack of drinking water increases. Currently, approximately 1.2 billion people globally (one-sixth of the world’s population) do not have access to adequate clean water. Since a large part of the world’s population is concentrated in coastal areas, the desalination of seawater seems to be a promising solution, especially in our Arab world. An innovative stand-alone solar desalination system could be used to produce drinking water from seawater or any brackish water sources. The great advantage of such a system is that it combines efficient desalination technology, reverse osmosis, with a renewable energy source;the main goal is improving the technical feasibility of such systems. There are many advantages of this coupling with RE resources;first of all we separate the drinking water from the electricity grid and its faults, save the burning fossil fuel and its emissions and can provide fresh water to remote communities that do not have sufficient traditional energy sources;but as we see in the thesis we don’t have economic benefit;because these projects depend on the electricity cost in each country and its location and its solar specifications. We design and implement a small laboratorial model for PV-RO (Photo-Voltaic Powered Reverse Osmosis) to recognize the its performance for seawater and brackish water;many of the problems are interrupted such as embargo on Syria;so we see this project has to be done according to affordable local potentialities, but we crave to keep the principle of operation, so we make it for the tap water which close to brackish.展开更多
Freshwater scarcity is a critical challenge that human society has to face in the 21st century.Desalination of seawater by reverse osmosis(RO)membranes was regarded as the most promising technology to overcome the cha...Freshwater scarcity is a critical challenge that human society has to face in the 21st century.Desalination of seawater by reverse osmosis(RO)membranes was regarded as the most promising technology to overcome the challenge given that plenty of potential fresh water resources in oceans.However,the requirements for high desalination efficiency in terms of permeation flux and rejection rate become the bottle-neck which needs to be broken down by developing novel RO membranes with new structure and composition.Cellulose acetate RO membranes exhibited long durability,chlorine resistance,and outstanding desalination efficiency that are worthy of being recalled to address the current shortcomings brought by polyamide RO membranes.In terms of performance enhancement,it is also important to use new ideas and to develop new strategies to modify cellulose acetate RO membranes in response to those complex challenges.Therefore,we focused on the state of the art cellulose acetate RO membranes and discussed the strategies on membrane structural manipulation adjusted by either phase separation or additives,which offered anti-fouling,anti-bacterial,anti-chlorine,durability,and thermo-mechanical properties to the modified membranes associated with the desalination performance,i.e.,permeation flux and rejection rate.The relationship between membrane structure and desalination efficiency was investigated and established to guide the development of cellulose acetate RO membranes for desalination.展开更多
Certain areas in Senegal have a serious problem of high fluoride and salinity in underground water because of soil properties. This water currently used for drink has a bad taste on consumption and caused diseases lik...Certain areas in Senegal have a serious problem of high fluoride and salinity in underground water because of soil properties. This water currently used for drink has a bad taste on consumption and caused diseases like dental fluorosis and skeletal fluorosis. A membrane filtration plant constructed by Pall Corporation was improved through nanofiltration (NF) and Low Pressure Reverse Osmosis (LPRO). Both NF and LPRO membranes were shown applicable for salinity and fluoride ions removal from brackish and high fluorinated drinking water in a remote community. The NF membrane has given a fluorine retention rate varying between 63.3% and 71% while the LPRO membrane allow to reach 97 to 98.9% for fluorine rejection. Highest salinity rejection rates expressed through conductivity measurements are around 46% and 97% for respectively NF and LPRO.展开更多
The biofouling of RO (Reverse Osmosis) system is one of the most common problems in highly contaminated demineralization and wastewater reuse system. The biological fouling occurs due to the bacteria growth and prol...The biofouling of RO (Reverse Osmosis) system is one of the most common problems in highly contaminated demineralization and wastewater reuse system. The biological fouling occurs due to the bacteria growth and proliferation under nutritive environment, resulting in a dramatic increase of dP (differential pressure) in the RO system, which requires frequent system shutdown for cleaning. This paper discusses the effectiveness of low-dP RO element and periodic flushing on the biofouling scheme of industrial steel mill wastewater reuse system. The low-dP RO element is able to provide low RO system dP, which is expressed to be lower biofouling starting point during the industrial system operation. However, the periodic flushing utilizes fresh water to remove the biofilm deposit along with feed channel. The long term operation performance demonstrated strong caustic is effective in removing the biofilm and recovering RO system performance. It is experimentally validated that, in the case of a high biofouling environment, low-dP RO element and periodic flushing is able to extend the cleaning cycles by 36.6% and 11.4%, respectively. Meanwhile, a joint application of both methods is proven to improve the biofouling control and extend the cleaning cycle by 62.5%, as compared to standard RO technology.展开更多
When designing and building an optimal reverse osmosis (RO) desalination plant, it is important that engineers select effective membrane parameters for optimal application performance. The membrane selection can deter...When designing and building an optimal reverse osmosis (RO) desalination plant, it is important that engineers select effective membrane parameters for optimal application performance. The membrane selection can determine the success or failure of the entire desalination operation. The objective of this work is to review available membrane types and design parameters that can be selected for optimal application to yield the highest potential for plant operations. Factors such as osmotic pressure, water flux values, and membrane resistance will all be evaluated as functions of membrane parameters. The optimization of these parameters will be determined through the deployment of the solution-diffusion model devolved from the Maxwell Stephan Equation. When applying the solution-diffusion model to evaluate RO membranes, the Maxwell Stephan Equation provides mathematical analysis through which the steps for mass transfer through a RO membrane may be observed and calculated. A practical study of the use of the solution-diffusion model will be discussed. This study uses the diffusion-solution model to evaluate the effectiveness of a variety of Toray RO membranes. This practical application confirms two principal hypotheses when using the diffusion-solution model for membrane evaluation. First, there is an inverse relationship between membrane and water flux rate. Second, there is a proportional linear relationship between overall water flux rate and the applied pressure across a membrane.展开更多
Scaling of reverse osmosis (RO) membrane surface is one of the main problems in desalination proc- esses. To mitigate scales, organic anti-scalants are often used. If the dosages of anti-scalants are reduced, by using...Scaling of reverse osmosis (RO) membrane surface is one of the main problems in desalination proc- esses. To mitigate scales, organic anti-scalants are often used. If the dosages of anti-scalants are reduced, by using other much cheaper scale inhibitors, RO running cost will decrease greatly. The present paper investigated the inhi- bition of CaCO3 precipitation by zinc ions in RO system. The results show that the zinc ion concentration of 2mg?L-1 was able to exert a marked suppression effect on both bulk precipitation of CaCO3 and on membrane scaling on waters of moderate hardness.展开更多
Tanneries reusing wastewater by combination of conventional and advanced Reverse Osmosis (RO) treatment technologies were assessed for technical and economic viabilities. Conventional treatment methods such as neutral...Tanneries reusing wastewater by combination of conventional and advanced Reverse Osmosis (RO) treatment technologies were assessed for technical and economic viabilities. Conventional treatment methods such as neutralization, clari-flocculation and biological processes are followed to clean the effluents before feeding to RO membrane modules. The characteristics of untreated composite effluents such as pH, biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), total dissolved solids (TDS), and total chromium were in the range of 4.00-4.60, 680-3600 mg/L, 1698-7546 mg/L, 980-1480 mg/L, 4200-14500 mg/L, and 26.4-190 mg/L, respectively. Inorganic ions like Ca2+, Na+, Cl– and SO42– were found more in the wastewaters. Conventional treatments significantly removed the organic pollutants however failed to remove dissolved inorganic salts. Membrane technology removed the salts as well as remaining organic pollutants and the product water is reused in the process. The studied tanneries (5 numbers) have achieved 93-98%, 92-99% and 91-96% removal of TDS, sodium and chloride, respectively. Seventy to eighty five percentage of wastewater was recovered and recycled in the industrial processes. The rejects are subject to either solar evaporation system or Multiple Effect Evaporation (MEE) technology. The resulting salts are collected in polythene bags and disposed into scientifically managed secured land fill (SLF) site. The cost of wastewater treatment for operation and maintenances of RO including the pre-treatments (conventional methods) is INR 100-110 m-3.展开更多
In order to improve the energy efficiency, reduce the CO2 emission and decrease the cost, a cogenera- tion system for desalination water, heat and power production was studied in this paper. The superstructure of the ...In order to improve the energy efficiency, reduce the CO2 emission and decrease the cost, a cogenera- tion system for desalination water, heat and power production was studied in this paper. The superstructure of the cogeneration system consisted of a coal-based thermal power plant (TPP), a multi-stage flash desalination (MSF) module and reverse osmosis desalination (RO) module. For different demands of water, heat and power production, the corresponding optimal production structure was different. After reasonable simplification, the process model ot each unit was built. The economical model, including the unit investment, and operation and maintenance cost, was presented. By solving this non-linear programming (NLP) model, whose objective is to minimize the annual cost, an optimal cogeneration system can be obtained. Compared to separate production systems, the optimal system can reduce 16.1%-21.7% of the total annual cost. showing this design method was effective.展开更多
The main aim of this work is to design a suitable Fractional Order Proportionl Integral Derivative(FOPID)controller with Chaotic Whale Optimization Algorithm(CWOA)for a RO desalination system.Continuous research on Re...The main aim of this work is to design a suitable Fractional Order Proportionl Integral Derivative(FOPID)controller with Chaotic Whale Optimization Algorithm(CWOA)for a RO desalination system.Continuous research on Reverse Osmosis(RO)desalination plants is a promising technique for satisfaction with sustainable and efficient RO plants.This work implements CWOA based FOPID for the simulation of reverse osmosis(RO)desalination process for both servo and regulatory problems.Mathematical modeling is a vital constituent of designing advanced and developed engineering processes,which helps to gain a deep study of processes to predict the performance,more efficiently.Numerous approaches have been employed for mathematical models based on mass and heat transfer and concentration of permeable flow rate.Incorporation of FOPID controllers is broadly used to improve the dynamic response of the system,at the same time,to reduce undershoot or overshoot,steady state error and hence improve the response.The performances of the FOPID controller with optimization is compared in terms of measures such as Integral Time Absolute Error(ITAE)and Integral Square Error(ISE).Simulation results with FOPID on desalination process achieved rise time of 0.0311 s,settling time of 0.0489 s and 0.7358%overshoot,better than the existing techniques available in the literatures.展开更多
Mesoporous silica nanoparticles(MSN),with higher water permeability than NaA zeolite,were used to fabricate thin-film nanocomposite(TFN)reverse osmosis(RO)membranes.However,only aminoalkyl-modified MSN and low-pressur...Mesoporous silica nanoparticles(MSN),with higher water permeability than NaA zeolite,were used to fabricate thin-film nanocomposite(TFN)reverse osmosis(RO)membranes.However,only aminoalkyl-modified MSN and low-pressure(less than 2.1 MPa)RO membrane were investigated.In this study,aminophenyl-modified MSN(AMSN)were synthesized and used to fabricate high-pressure(5.52 MPa)RO membranes.With the increasing of AMSN dosage,the crosslinking degree of the aromatic polyamide decreased,while the hydrophilicity of the membranes increased.The membrane morphology was maintained to show a ridge-and-valley structure,with only a slight increase in membrane surface roughness.At the optimum conditions(AMSN dosage of 0.25 g/L),when compared with the pure polyamide RO membrane,the water flux of the TFN RO membrane(55.67 L/m^2/h)was increased by about 21.6%,while NaCl rejection(98.97%)was slightly decreased by only 0.29%.However,the water flux of the membranes was much lower than expected.We considered that the enhancement of RO membrane permeability is attributed to the reduction of the effective thickness of the PA layer.展开更多
A reverse osmosis (RO) desalination system coupled with tidal energy is proposed. The mechanical energy produced by the tidal energy through hydraulic turbine is directly used to drive the RO unit. The system perfor...A reverse osmosis (RO) desalination system coupled with tidal energy is proposed. The mechanical energy produced by the tidal energy through hydraulic turbine is directly used to drive the RO unit. The system performances and the water cost of the conventional and tidal energy RO systems are compared. It is found that the proposed tidal energy RO system can save water cost in the range of 31.0%-41.7% in comparison with the conventional RO system. There is an optimum feed pressure that leads to the lowest water cost. The tidal RO system can save more costs at a high feed pressure or a high water recovery rate. The optimum feed pressure of the tidal energy RO system is higher than that of the conventional RO system. The longer lifetime of the tidal energy RO system can save even more water cost. When the site development cost rate is lower than 40%, the water cost of the tidal energy RO system will be lower than that of the conventional RO system. The proposed technology will be an effective alternative desalination method in the future.展开更多
文摘This article examines the influence of seawater temperature and total dissolved solids (TDS) on reverse osmosis (RO) desalination in the Arabian Gulf region, with a focus on the impact of climate change. The study highlights the changes in seawater temperature and TDS levels over the years and discusses their effects on the efficiency and productivity of RO desalination plants. It emphasizes the importance of monitoring TDS levels and controlling seawater temperature to optimize water production. The article also suggests various solutions, including intensive pre-treatment, development of high-performance membranes, exploration of alternative water sources, and regulation of discharges into the Gulf, to ensure sustainable water supply in the face of rising TDS levels and seawater temperature. Further research and comprehensive monitoring are recommended to understand the implications of these findings and develop effective strategies for the management of marine resources in the Arabian Gulf.
文摘Brackish water (BW) desalination is a primary path to relieve the shortage of water. As one of the BW desalination methods, reverse osmosis (RO) technology has advantage for both technology and process procedure. The expounding of this research studied or reviewed recent years, reverse osmosis membrane, energy recovery, new energy and application technology in BW desalination of RO at home and abroad. Wind power and solar energy can be combined with energy recovery device for RO. The research also explains that BW desalination by RO is practical and feasible in some areas in China.
文摘Reverse Osmosis (RO) desalination plants are highly nonlinear multi-input-multioutput systems that are affected by uncertainties, constraints and some physical phenomena such as membrane fouling that are mathematically difficult to describe. Such systems require effective control strategies that take these effects into account. Such a control strategy is the nonlinear model predictive (NMPC) controller. However, an NMPC depends very much on the accuracy of the internal model used for prediction in order to maintain feasible operating conditions of the RO desalination plant. Recurrent Neural Networks (RNNs), especially the Long-Short-Term Memory (LSTM) can capture complex nonlinear dynamic behavior and provide long-range predictions even in the presence of disturbances. Therefore, in this paper an NMPC for a RO desalination plant that utilizes an LSTM as the predictive model will be presented. It will be tested to maintain a given permeate flow rate and keep the permeate concentration under a certain limit by manipulating the feed pressure. Results show a good performance of the system.
基金funded by the Project AM11/04 of the Junta de Andalucía(Spain)。
文摘Fouling phenomenon is considered among the major reasons that cause significant increase of operating cost of desalination plants equipped with reverse osmosis(RO)membranes.This phenomenon is studied in the present work in the case of RO polyamide aromatic membranes using model seawater containing inorganic salts and colloidal compounds.Different solubility conditions of CaCO3 and CaSO4 were applied to study RO performances with and without colloid presence.During experiments,the membrane permeate fluxes were continuously monitored.Moreover,studies of chemical composition,structure,and morphology of the materials deposited on the membrane surface were conducted using energy dispersive microanalysis(EDS)X-ray diffraction and scanning electronic microscopy(SEM).Results show that in conditions of calcium carbonate oversaturation there is a reduction in the permeate flow of 11.2%due to fouling of the membrane by the precipitation of this compound.While in the same conditions of calcium sulphate oversaturation the reduction of the flow is 5%,so we can conclude that in conditions of oversaturation of both salts,calcium carbonate produces a greater fouling of the membrane that in its view causes greater decrease in the flow of permeate.All this based on the results of the test with both salts in oversaturated conditions.Resulting in the formation of calcite and gypsum crystals onto the membranes as XRD analyses stated.Additional presence of colloidal silica in those conditions intensifies strongly the fouling,leading until to 24.1%of permeate flux decrease.
文摘Seawater desalination has been peoples fond dream since ancient times, the dream is now becoming a reality. This paper presents a brief development history of reverse osmosis. Much attention was paid to innovative development in membranes, modules, equipments and applied technology, including asymmetric and composite membranes, spiral-wound element and hollow fiber module, energy recovery equipments and different technological processes. The extension of reverse osmosis, such as desalination, pre-concentration, integrated processes and nanofiltration, is also briefly mentioned.
文摘Reverse osmosis (RO) is proved to be the most reliable, cost effective, and energy efficient in producing fresh water compared to other desalination technologies. It is the fastest-growing desalination technology with a greater number of installations around the world. The economic and technical performance of a medium-capacity RO desalination plant (2,000 m^3/day) proposed to be installed in Umm Qasr city south of Basra, Iraq is analyzed using DEEP-3.2 software created by the International Atomic Energy Agency (IAEA). This port city is located on the Gulf shore and does not have any fresh water resources. The analysis shows that the cost of fresh water produced by this plant is US$0.986/m^3 with a good quality of fresh water (279 ppm), which is a reasonable price for this remote area. The analysis also shows an increase in water production cost of about 12% at increased electricity price from 0.06 to 0.1 US$/kWh, 53% when the seawater salinity increased from 35,000 to 45,000 ppm, 2.5% when the seawater temperature decreased from 33 ℃ to 20 ℃, and 0.71% when the interest rate increased from 0% to 5%. Pumping fresh water from the Basra purification plant (located 175 km north of Umm Qasr) is 22.16 times the cost and 236.7% poorer quality than the fresh water produced by the RO plant.
文摘The rising of the world’s population leads automatically to the rising of water demand. As a consequence the lack of drinking water increases. Currently, approximately 1.2 billion people globally (one-sixth of the world’s population) do not have access to adequate clean water. Since a large part of the world’s population is concentrated in coastal areas, the desalination of seawater seems to be a promising solution, especially in our Arab world. An innovative stand-alone solar desalination system could be used to produce drinking water from seawater or any brackish water sources. The great advantage of such a system is that it combines efficient desalination technology, reverse osmosis, with a renewable energy source;the main goal is improving the technical feasibility of such systems. There are many advantages of this coupling with RE resources;first of all we separate the drinking water from the electricity grid and its faults, save the burning fossil fuel and its emissions and can provide fresh water to remote communities that do not have sufficient traditional energy sources;but as we see in the thesis we don’t have economic benefit;because these projects depend on the electricity cost in each country and its location and its solar specifications. We design and implement a small laboratorial model for PV-RO (Photo-Voltaic Powered Reverse Osmosis) to recognize the its performance for seawater and brackish water;many of the problems are interrupted such as embargo on Syria;so we see this project has to be done according to affordable local potentialities, but we crave to keep the principle of operation, so we make it for the tap water which close to brackish.
基金the National Natural Science Foundation of China(51673011).
文摘Freshwater scarcity is a critical challenge that human society has to face in the 21st century.Desalination of seawater by reverse osmosis(RO)membranes was regarded as the most promising technology to overcome the challenge given that plenty of potential fresh water resources in oceans.However,the requirements for high desalination efficiency in terms of permeation flux and rejection rate become the bottle-neck which needs to be broken down by developing novel RO membranes with new structure and composition.Cellulose acetate RO membranes exhibited long durability,chlorine resistance,and outstanding desalination efficiency that are worthy of being recalled to address the current shortcomings brought by polyamide RO membranes.In terms of performance enhancement,it is also important to use new ideas and to develop new strategies to modify cellulose acetate RO membranes in response to those complex challenges.Therefore,we focused on the state of the art cellulose acetate RO membranes and discussed the strategies on membrane structural manipulation adjusted by either phase separation or additives,which offered anti-fouling,anti-bacterial,anti-chlorine,durability,and thermo-mechanical properties to the modified membranes associated with the desalination performance,i.e.,permeation flux and rejection rate.The relationship between membrane structure and desalination efficiency was investigated and established to guide the development of cellulose acetate RO membranes for desalination.
文摘Certain areas in Senegal have a serious problem of high fluoride and salinity in underground water because of soil properties. This water currently used for drink has a bad taste on consumption and caused diseases like dental fluorosis and skeletal fluorosis. A membrane filtration plant constructed by Pall Corporation was improved through nanofiltration (NF) and Low Pressure Reverse Osmosis (LPRO). Both NF and LPRO membranes were shown applicable for salinity and fluoride ions removal from brackish and high fluorinated drinking water in a remote community. The NF membrane has given a fluorine retention rate varying between 63.3% and 71% while the LPRO membrane allow to reach 97 to 98.9% for fluorine rejection. Highest salinity rejection rates expressed through conductivity measurements are around 46% and 97% for respectively NF and LPRO.
文摘The biofouling of RO (Reverse Osmosis) system is one of the most common problems in highly contaminated demineralization and wastewater reuse system. The biological fouling occurs due to the bacteria growth and proliferation under nutritive environment, resulting in a dramatic increase of dP (differential pressure) in the RO system, which requires frequent system shutdown for cleaning. This paper discusses the effectiveness of low-dP RO element and periodic flushing on the biofouling scheme of industrial steel mill wastewater reuse system. The low-dP RO element is able to provide low RO system dP, which is expressed to be lower biofouling starting point during the industrial system operation. However, the periodic flushing utilizes fresh water to remove the biofilm deposit along with feed channel. The long term operation performance demonstrated strong caustic is effective in removing the biofilm and recovering RO system performance. It is experimentally validated that, in the case of a high biofouling environment, low-dP RO element and periodic flushing is able to extend the cleaning cycles by 36.6% and 11.4%, respectively. Meanwhile, a joint application of both methods is proven to improve the biofouling control and extend the cleaning cycle by 62.5%, as compared to standard RO technology.
文摘When designing and building an optimal reverse osmosis (RO) desalination plant, it is important that engineers select effective membrane parameters for optimal application performance. The membrane selection can determine the success or failure of the entire desalination operation. The objective of this work is to review available membrane types and design parameters that can be selected for optimal application to yield the highest potential for plant operations. Factors such as osmotic pressure, water flux values, and membrane resistance will all be evaluated as functions of membrane parameters. The optimization of these parameters will be determined through the deployment of the solution-diffusion model devolved from the Maxwell Stephan Equation. When applying the solution-diffusion model to evaluate RO membranes, the Maxwell Stephan Equation provides mathematical analysis through which the steps for mass transfer through a RO membrane may be observed and calculated. A practical study of the use of the solution-diffusion model will be discussed. This study uses the diffusion-solution model to evaluate the effectiveness of a variety of Toray RO membranes. This practical application confirms two principal hypotheses when using the diffusion-solution model for membrane evaluation. First, there is an inverse relationship between membrane and water flux rate. Second, there is a proportional linear relationship between overall water flux rate and the applied pressure across a membrane.
基金Supported by the National Natural Science Foundation of China (No.20306015) and the Scientific Research Foundation of theState Education Ministry for Returned Overseas Chinese Scholars (No.[2003]406).
文摘Scaling of reverse osmosis (RO) membrane surface is one of the main problems in desalination proc- esses. To mitigate scales, organic anti-scalants are often used. If the dosages of anti-scalants are reduced, by using other much cheaper scale inhibitors, RO running cost will decrease greatly. The present paper investigated the inhi- bition of CaCO3 precipitation by zinc ions in RO system. The results show that the zinc ion concentration of 2mg?L-1 was able to exert a marked suppression effect on both bulk precipitation of CaCO3 and on membrane scaling on waters of moderate hardness.
文摘Tanneries reusing wastewater by combination of conventional and advanced Reverse Osmosis (RO) treatment technologies were assessed for technical and economic viabilities. Conventional treatment methods such as neutralization, clari-flocculation and biological processes are followed to clean the effluents before feeding to RO membrane modules. The characteristics of untreated composite effluents such as pH, biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), total dissolved solids (TDS), and total chromium were in the range of 4.00-4.60, 680-3600 mg/L, 1698-7546 mg/L, 980-1480 mg/L, 4200-14500 mg/L, and 26.4-190 mg/L, respectively. Inorganic ions like Ca2+, Na+, Cl– and SO42– were found more in the wastewaters. Conventional treatments significantly removed the organic pollutants however failed to remove dissolved inorganic salts. Membrane technology removed the salts as well as remaining organic pollutants and the product water is reused in the process. The studied tanneries (5 numbers) have achieved 93-98%, 92-99% and 91-96% removal of TDS, sodium and chloride, respectively. Seventy to eighty five percentage of wastewater was recovered and recycled in the industrial processes. The rejects are subject to either solar evaporation system or Multiple Effect Evaporation (MEE) technology. The resulting salts are collected in polythene bags and disposed into scientifically managed secured land fill (SLF) site. The cost of wastewater treatment for operation and maintenances of RO including the pre-treatments (conventional methods) is INR 100-110 m-3.
基金Supported by the National Natural Science Foundation of China(21076202)
文摘In order to improve the energy efficiency, reduce the CO2 emission and decrease the cost, a cogenera- tion system for desalination water, heat and power production was studied in this paper. The superstructure of the cogeneration system consisted of a coal-based thermal power plant (TPP), a multi-stage flash desalination (MSF) module and reverse osmosis desalination (RO) module. For different demands of water, heat and power production, the corresponding optimal production structure was different. After reasonable simplification, the process model ot each unit was built. The economical model, including the unit investment, and operation and maintenance cost, was presented. By solving this non-linear programming (NLP) model, whose objective is to minimize the annual cost, an optimal cogeneration system can be obtained. Compared to separate production systems, the optimal system can reduce 16.1%-21.7% of the total annual cost. showing this design method was effective.
文摘The main aim of this work is to design a suitable Fractional Order Proportionl Integral Derivative(FOPID)controller with Chaotic Whale Optimization Algorithm(CWOA)for a RO desalination system.Continuous research on Reverse Osmosis(RO)desalination plants is a promising technique for satisfaction with sustainable and efficient RO plants.This work implements CWOA based FOPID for the simulation of reverse osmosis(RO)desalination process for both servo and regulatory problems.Mathematical modeling is a vital constituent of designing advanced and developed engineering processes,which helps to gain a deep study of processes to predict the performance,more efficiently.Numerous approaches have been employed for mathematical models based on mass and heat transfer and concentration of permeable flow rate.Incorporation of FOPID controllers is broadly used to improve the dynamic response of the system,at the same time,to reduce undershoot or overshoot,steady state error and hence improve the response.The performances of the FOPID controller with optimization is compared in terms of measures such as Integral Time Absolute Error(ITAE)and Integral Square Error(ISE).Simulation results with FOPID on desalination process achieved rise time of 0.0311 s,settling time of 0.0489 s and 0.7358%overshoot,better than the existing techniques available in the literatures.
基金This work is supported by the National Key Research and Development Program of China(Grant Nos.2017YFC0403903,2017YFC0403901 and 2018YFC0408002)the Special Fund for Basic Scientific Research Business of Central Public Research Institutes(No.KJBYWF-2017-T12 and K-JBYWF-2018-HZ01)the Young Taishan Scholars Program of Shandong Province.
文摘Mesoporous silica nanoparticles(MSN),with higher water permeability than NaA zeolite,were used to fabricate thin-film nanocomposite(TFN)reverse osmosis(RO)membranes.However,only aminoalkyl-modified MSN and low-pressure(less than 2.1 MPa)RO membrane were investigated.In this study,aminophenyl-modified MSN(AMSN)were synthesized and used to fabricate high-pressure(5.52 MPa)RO membranes.With the increasing of AMSN dosage,the crosslinking degree of the aromatic polyamide decreased,while the hydrophilicity of the membranes increased.The membrane morphology was maintained to show a ridge-and-valley structure,with only a slight increase in membrane surface roughness.At the optimum conditions(AMSN dosage of 0.25 g/L),when compared with the pure polyamide RO membrane,the water flux of the TFN RO membrane(55.67 L/m^2/h)was increased by about 21.6%,while NaCl rejection(98.97%)was slightly decreased by only 0.29%.However,the water flux of the membranes was much lower than expected.We considered that the enhancement of RO membrane permeability is attributed to the reduction of the effective thickness of the PA layer.
文摘A reverse osmosis (RO) desalination system coupled with tidal energy is proposed. The mechanical energy produced by the tidal energy through hydraulic turbine is directly used to drive the RO unit. The system performances and the water cost of the conventional and tidal energy RO systems are compared. It is found that the proposed tidal energy RO system can save water cost in the range of 31.0%-41.7% in comparison with the conventional RO system. There is an optimum feed pressure that leads to the lowest water cost. The tidal RO system can save more costs at a high feed pressure or a high water recovery rate. The optimum feed pressure of the tidal energy RO system is higher than that of the conventional RO system. The longer lifetime of the tidal energy RO system can save even more water cost. When the site development cost rate is lower than 40%, the water cost of the tidal energy RO system will be lower than that of the conventional RO system. The proposed technology will be an effective alternative desalination method in the future.