For further reducing the load of subsequent processing,the activated carbon adsorption method was used to remove organic compounds from reverse osmosis water concentrate,and the influence of variety of activated carbo...For further reducing the load of subsequent processing,the activated carbon adsorption method was used to remove organic compounds from reverse osmosis water concentrate,and the influence of variety of activated carbon,residence time,dosage of activated carbon and p H on the removal rate of COD was studied.The results show that the removal rate of COD was up to 61.8%under the conditions of influent p H=6,400 ml water,30 min of residence time and 1.5 g of 2#activated carbon as the adsorbent.In the dynamic adsorption experiment and field application,the adsorption tower was loaded with 40 tons of 2#activated carbon,and the inflow of influent water was 100 m^3/h;average COD was 142 mg/L,and p H was 8.04;the residence time was 36 min.Under the above conditions,when effluent COD was less than 60 mg/L,the adsorption capacity of activated carbon was up to 1330 m^3/t.展开更多
In this study,raw Arundo donax(A.donax)pieces were applied as carbon source and biofilm carriers for denitrification in a lab-scale moving bed biofilm reactor(MBBR)for the treatment of reverse osmosis concentrate gath...In this study,raw Arundo donax(A.donax)pieces were applied as carbon source and biofilm carriers for denitrification in a lab-scale moving bed biofilm reactor(MBBR)for the treatment of reverse osmosis concentrate gathered from local wastewater reuse plant.At stable phase(about 60 days),efficient denitrification performance was obtained with73.2%±19.5%NO3--N average removal and 8.10±3.45 g N/(m3·day)NO3--N average volumetric removal rate.Mass balance analysis showed that 4.84 g A.donax was required to remove 1 g TN.Quantitative real-time PCR analysis results showed that the copy numbers of 16S r-RNA,narG,nirS,nosZ and anammox gene of carrier biofilm and suspended activated sludge in the declination phase(BF2 and AS2)were lower than those of samples in the stable phase(BF1 and AS1),and relatively higher copy numbers of nirS and nirK genes with lower abundance of narG and nosZ genes were observed.High-throughput sequencing analysis was conducted for BF2 and AS2,and similar dominant phyla and classes with different abundance were obtained.The class Gammaproteobacteria affiliated with the phylum Proteobacteria was the most dominant microbial community in both BF2(52.6%)and AS2(41.7%).The PICRUSt prediction results indicated that 33 predictive specific genes were related to denitrification process,and the relative abundance of 18 predictive specific genes in BF2 were higher than those in AS2.展开更多
Reverse osmosis(RO)is frequently used for water reclamation from treated wastewater or desalination plants.The RO concentrate(ROC)produced from the coal chemical industry(CCI)generally contains refractory organic poll...Reverse osmosis(RO)is frequently used for water reclamation from treated wastewater or desalination plants.The RO concentrate(ROC)produced from the coal chemical industry(CCI)generally contains refractory organic pollutants and extremely high-concentration inorganic salts with a dissolved solids content of more than 20 g/L contributed by inorganic ions,such as Na^(+),Ca^(2+),Mg^(2+),Cl^(−),and SO_(4)^(2−).To address this issue,in this study,we focused on coupling forward osmosis(FO)with chemical softening(FO-CS)for the volume minimization of CCI ROC and the recovery of valuable resources in the form of CaCO_(3).In the case of the real raw CCI ROC,softening treatment by lime-soda ash was shown to effectively remove Ca^(2+)/Ba^(2+)(>98.5%)and Mg^(2+)/Sr^(2+)/Si(>80%),as well as significantly mitigate membrane scaling during FO.The softened ROC and raw ROC corresponded to a maximum water recovery of 86%and 54%,respectively.During cyclic FO tests(4×10 h),a 27%decline in the water flux was observed for raw ROC,whereas only 4%was observed for softened ROC.The cleaning efficiency using EDTA was also found to be considerably higher for softened ROC(88.5%)than that for raw ROC(49.0%).In addition,CaCO3(92.2%purity)was recovered from the softening sludge with an average yield of 5.6 kg/m^(3) treated ROC.This study provides a proof-of-concept demonstration of the FO-CS coupling process for ROC volume minimization and valuable resources recovery,which makes the treatment of CCI ROC more efficient and more economical.展开更多
Latex wastewater is a kind of refractory organic wastewater containing high concentrations of organics and ammonia nitrogen.In this work,the combined process of forward osmosis(FO)and reverse osmosis(RO)was designed t...Latex wastewater is a kind of refractory organic wastewater containing high concentrations of organics and ammonia nitrogen.In this work,the combined process of forward osmosis(FO)and reverse osmosis(RO)was designed to treat the latex wastewater in the whole process,achieving the water recovery rate of 99%and basically no waste discharge after the catalytic oxidation process.The turbidity of the latex wastewater was decreased to below 1 NTU by microfiltration pretreatment,and then using MgCl_2 worked as the draw solution for FO process to treat the latex wastewater.Different operation conditions including adding acid or scale inhibitor as the pretreatment methods were conducted to improve the treatment performance of the combined process.After the treatment of the whole process,the concentration of COD was less than 20 mg·L^(-1),the concentration of NH_3-N was less than 10 mg·L^(-1),and the concentration of TP was less than 0.5 mg·L^(-1)for the treated latex wastewater.The water quality met standards of industrial water reuse after the complete analysis of the treated latex wastewater,meanwhile,useful substances of L-Quebrachitol(L-Q)were successfully extracted from the concentrated solution.Therefore,the combined process of FO and RO could realize the efficient treatment and reuse of latex wastewater,which provided with some important guidance on the industrial application.展开更多
基金Supported by Industrial Water Treatment Engineering Technology Innovation Team,Shaanxi Science and Technology Innovation Team(2015KCT-22)
文摘For further reducing the load of subsequent processing,the activated carbon adsorption method was used to remove organic compounds from reverse osmosis water concentrate,and the influence of variety of activated carbon,residence time,dosage of activated carbon and p H on the removal rate of COD was studied.The results show that the removal rate of COD was up to 61.8%under the conditions of influent p H=6,400 ml water,30 min of residence time and 1.5 g of 2#activated carbon as the adsorbent.In the dynamic adsorption experiment and field application,the adsorption tower was loaded with 40 tons of 2#activated carbon,and the inflow of influent water was 100 m^3/h;average COD was 142 mg/L,and p H was 8.04;the residence time was 36 min.Under the above conditions,when effluent COD was less than 60 mg/L,the adsorption capacity of activated carbon was up to 1330 m^3/t.
基金supported by the National Major Science and Technology Program for Water Pollution Control and Treatment (Nos. 2017ZX07401003-05-01 2014ZX07216-001)the China Scholarship Council Foundation (No. 2011911098)
文摘In this study,raw Arundo donax(A.donax)pieces were applied as carbon source and biofilm carriers for denitrification in a lab-scale moving bed biofilm reactor(MBBR)for the treatment of reverse osmosis concentrate gathered from local wastewater reuse plant.At stable phase(about 60 days),efficient denitrification performance was obtained with73.2%±19.5%NO3--N average removal and 8.10±3.45 g N/(m3·day)NO3--N average volumetric removal rate.Mass balance analysis showed that 4.84 g A.donax was required to remove 1 g TN.Quantitative real-time PCR analysis results showed that the copy numbers of 16S r-RNA,narG,nirS,nosZ and anammox gene of carrier biofilm and suspended activated sludge in the declination phase(BF2 and AS2)were lower than those of samples in the stable phase(BF1 and AS1),and relatively higher copy numbers of nirS and nirK genes with lower abundance of narG and nosZ genes were observed.High-throughput sequencing analysis was conducted for BF2 and AS2,and similar dominant phyla and classes with different abundance were obtained.The class Gammaproteobacteria affiliated with the phylum Proteobacteria was the most dominant microbial community in both BF2(52.6%)and AS2(41.7%).The PICRUSt prediction results indicated that 33 predictive specific genes were related to denitrification process,and the relative abundance of 18 predictive specific genes in BF2 were higher than those in AS2.
基金This work was supported by the National Kry Technology R&D Program(No.2019YFC0408503)State Key Laboratory of Urban Water Resource and Environment(No.20180X09).
文摘Reverse osmosis(RO)is frequently used for water reclamation from treated wastewater or desalination plants.The RO concentrate(ROC)produced from the coal chemical industry(CCI)generally contains refractory organic pollutants and extremely high-concentration inorganic salts with a dissolved solids content of more than 20 g/L contributed by inorganic ions,such as Na^(+),Ca^(2+),Mg^(2+),Cl^(−),and SO_(4)^(2−).To address this issue,in this study,we focused on coupling forward osmosis(FO)with chemical softening(FO-CS)for the volume minimization of CCI ROC and the recovery of valuable resources in the form of CaCO_(3).In the case of the real raw CCI ROC,softening treatment by lime-soda ash was shown to effectively remove Ca^(2+)/Ba^(2+)(>98.5%)and Mg^(2+)/Sr^(2+)/Si(>80%),as well as significantly mitigate membrane scaling during FO.The softened ROC and raw ROC corresponded to a maximum water recovery of 86%and 54%,respectively.During cyclic FO tests(4×10 h),a 27%decline in the water flux was observed for raw ROC,whereas only 4%was observed for softened ROC.The cleaning efficiency using EDTA was also found to be considerably higher for softened ROC(88.5%)than that for raw ROC(49.0%).In addition,CaCO3(92.2%purity)was recovered from the softening sludge with an average yield of 5.6 kg/m^(3) treated ROC.This study provides a proof-of-concept demonstration of the FO-CS coupling process for ROC volume minimization and valuable resources recovery,which makes the treatment of CCI ROC more efficient and more economical.
基金supported by the National Natural Science Foundation of China (22125802 and 22108012)Natural Science Foundation of Beijing Municipality (2222017)Fundamental Research Funds for the Central Universities (BUCTRC-202109)。
文摘Latex wastewater is a kind of refractory organic wastewater containing high concentrations of organics and ammonia nitrogen.In this work,the combined process of forward osmosis(FO)and reverse osmosis(RO)was designed to treat the latex wastewater in the whole process,achieving the water recovery rate of 99%and basically no waste discharge after the catalytic oxidation process.The turbidity of the latex wastewater was decreased to below 1 NTU by microfiltration pretreatment,and then using MgCl_2 worked as the draw solution for FO process to treat the latex wastewater.Different operation conditions including adding acid or scale inhibitor as the pretreatment methods were conducted to improve the treatment performance of the combined process.After the treatment of the whole process,the concentration of COD was less than 20 mg·L^(-1),the concentration of NH_3-N was less than 10 mg·L^(-1),and the concentration of TP was less than 0.5 mg·L^(-1)for the treated latex wastewater.The water quality met standards of industrial water reuse after the complete analysis of the treated latex wastewater,meanwhile,useful substances of L-Quebrachitol(L-Q)were successfully extracted from the concentrated solution.Therefore,the combined process of FO and RO could realize the efficient treatment and reuse of latex wastewater,which provided with some important guidance on the industrial application.