Tanneries reusing wastewater by combination of conventional and advanced Reverse Osmosis (RO) treatment technologies were assessed for technical and economic viabilities. Conventional treatment methods such as neutral...Tanneries reusing wastewater by combination of conventional and advanced Reverse Osmosis (RO) treatment technologies were assessed for technical and economic viabilities. Conventional treatment methods such as neutralization, clari-flocculation and biological processes are followed to clean the effluents before feeding to RO membrane modules. The characteristics of untreated composite effluents such as pH, biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), total dissolved solids (TDS), and total chromium were in the range of 4.00-4.60, 680-3600 mg/L, 1698-7546 mg/L, 980-1480 mg/L, 4200-14500 mg/L, and 26.4-190 mg/L, respectively. Inorganic ions like Ca2+, Na+, Cl– and SO42– were found more in the wastewaters. Conventional treatments significantly removed the organic pollutants however failed to remove dissolved inorganic salts. Membrane technology removed the salts as well as remaining organic pollutants and the product water is reused in the process. The studied tanneries (5 numbers) have achieved 93-98%, 92-99% and 91-96% removal of TDS, sodium and chloride, respectively. Seventy to eighty five percentage of wastewater was recovered and recycled in the industrial processes. The rejects are subject to either solar evaporation system or Multiple Effect Evaporation (MEE) technology. The resulting salts are collected in polythene bags and disposed into scientifically managed secured land fill (SLF) site. The cost of wastewater treatment for operation and maintenances of RO including the pre-treatments (conventional methods) is INR 100-110 m-3.展开更多
Palm oil industry is the most important agro-industry in Malaysia, but its by-product-palm oil mill effluent (POME), posed a great threat to water environment. In the past decades, several treatment and disposal met...Palm oil industry is the most important agro-industry in Malaysia, but its by-product-palm oil mill effluent (POME), posed a great threat to water environment. In the past decades, several treatment and disposal methods have been proposed and investigated to solve this problem. A two-stage pilot-scale plant was designed and constructed for POME treatment. Anaerobic digestion and aerobic biodegradation constituted the first biological stage, while ultrafiltration (UF) and reverse osmosis (RO) membrane units were combined as the second membrane separation stage. In the anaerobic expanded granular sludge bed (EGSB) reactor, about 43% organic matter in POME was converted into biogas, and COD reduction efficiency reached 93% and 22% in EGSB and the following aerobic reactor, respectively. With the treatment in the first biological stage, suspended solids and oil also decreased to a low degree. All these alleviated the membrane fouling and prolonged the membrane life. In the membrane process unit, almost all the suspended solids were captured by UF membranes, while RO membrane excluded most of the dissolved solids or inorganic salts from RO permeate. After the whole treatment processes, organic matter in POME expressed by BOD and COD was removed almost thoroughly. Suspended solids and color were not detectable in RO permeate any more, and mineral elements only existed in trace amount (except for K and Na). The high-quality effluent was crystal clear and could be used as the boiler feed water.展开更多
Polyamide thin film composite membranes have dominated current reverse osmosis market on account of their excellent separation performances compared to the integrally skinned counterparts.Despite their very promising ...Polyamide thin film composite membranes have dominated current reverse osmosis market on account of their excellent separation performances compared to the integrally skinned counterparts.Despite their very promising separation performance,chlorine-induced degradation resulted from the susceptibility of polyamide toward chlorine attack has been regarded as the Achilles’s heel of polyamide thin film composite.The free chlorine species present during chlorine treatment can impair membrane performance through chlorination and depolymerization of the polyamide selective layer.From material point of view,a chemically stable membrane is crucial for the sustainable application of membrane separation process as it warrants a longer membrane lifespan and reduces the cost involved in membrane replacement.Various strategies,particularly those involved membrane material optimization and surface modifications,have been established to address this issue.This review discusses membrane degradation by free chlorine attack and its correlation with the surface chemistry of polyamide.The advancement in the development of chlorine resistant polyamide thin film composite membranes is reviewed based on the state-of-the-art surface modifications and tailoring approaches which include the in situ and postfabrication membrane modifications using a broad range of functional materials.The challenges and future directions in this field are also highlighted.展开更多
The increasing applications of seawater desalination technology have led to the wide usage of polyamide reverse osmosis membranes,resulting in a large number of wasted reverse osmosis membranes.In this work,the base n...The increasing applications of seawater desalination technology have led to the wide usage of polyamide reverse osmosis membranes,resulting in a large number of wasted reverse osmosis membranes.In this work,the base nonwoven layer of the wasted reverse osmosis membrane was successfully modified into the hydrophobic membrane via surface deposition strategy including TiO_(2) and 1H,1H,2H,2H-perfluorooctyltrichlorosilane(PFOTS),respectively.Various techniques were applied to characterize the obtained membranes,which were then used to separate the oil–water system.The optimally modified membrane displayed good hydrophobicity with a contact angle of 135.2°±0.3°,and its oil–water separation performance was as high as 97.8%.After 20 recycle tests,the oil–water separation performance remained more than 96%,which was attributed to the film adhesion of the anchored TiO_(2) and PFOTS layer on the surface.This work might provide a new avenue for recycling the wasted reverse osmosis membrane used in oily wastewater purification.展开更多
聚酰胺反渗透膜是目前广泛应用的一款商用化水处理膜。然而其表面活性层聚酰胺的结构致密,会导致水通量与截盐率出现“trade-off”现象。针对该问题提出,选择具有多孔结构的、亲水性超交联聚合物复合材料作为添加剂,在界面聚合过程中引...聚酰胺反渗透膜是目前广泛应用的一款商用化水处理膜。然而其表面活性层聚酰胺的结构致密,会导致水通量与截盐率出现“trade-off”现象。针对该问题提出,选择具有多孔结构的、亲水性超交联聚合物复合材料作为添加剂,在界面聚合过程中引入聚酰胺活性层中,为水分子提供更多水通道。同时,纯烃本质的超交联聚合物与聚酰胺的高度相容性,保证了反渗透复合膜的高效截盐性能。经过脱盐性能测试,结果显示添加3.0 mg PDA@HCP-B-SO_(3)H的反渗透复合膜具有最高的水通量为44.4 L·m^(-2)·h^(-1),截盐率高达99.6%。相比于聚酰胺反渗膜,3.0-PDA@HCP-B-SO_(3)H PA RO的水通量提升了26.5%,截盐率基本保持不变;相比于只嫁接-SO_(3)H的HCP-B-SO_(3)H PA RO,水通量提升了11.6%(35.0 L·m^(-2)·h^(-1)上升至39.8 L·m^(-2)·h^(-1)),截盐率基本持平。这说明添加具有多孔结构的、亲水性强的改性超交联聚合物作为添加剂,是一种十分有效地提升聚酰胺反渗透膜性能的方法。展开更多
文摘Tanneries reusing wastewater by combination of conventional and advanced Reverse Osmosis (RO) treatment technologies were assessed for technical and economic viabilities. Conventional treatment methods such as neutralization, clari-flocculation and biological processes are followed to clean the effluents before feeding to RO membrane modules. The characteristics of untreated composite effluents such as pH, biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), total dissolved solids (TDS), and total chromium were in the range of 4.00-4.60, 680-3600 mg/L, 1698-7546 mg/L, 980-1480 mg/L, 4200-14500 mg/L, and 26.4-190 mg/L, respectively. Inorganic ions like Ca2+, Na+, Cl– and SO42– were found more in the wastewaters. Conventional treatments significantly removed the organic pollutants however failed to remove dissolved inorganic salts. Membrane technology removed the salts as well as remaining organic pollutants and the product water is reused in the process. The studied tanneries (5 numbers) have achieved 93-98%, 92-99% and 91-96% removal of TDS, sodium and chloride, respectively. Seventy to eighty five percentage of wastewater was recovered and recycled in the industrial processes. The rejects are subject to either solar evaporation system or Multiple Effect Evaporation (MEE) technology. The resulting salts are collected in polythene bags and disposed into scientifically managed secured land fill (SLF) site. The cost of wastewater treatment for operation and maintenances of RO including the pre-treatments (conventional methods) is INR 100-110 m-3.
文摘Palm oil industry is the most important agro-industry in Malaysia, but its by-product-palm oil mill effluent (POME), posed a great threat to water environment. In the past decades, several treatment and disposal methods have been proposed and investigated to solve this problem. A two-stage pilot-scale plant was designed and constructed for POME treatment. Anaerobic digestion and aerobic biodegradation constituted the first biological stage, while ultrafiltration (UF) and reverse osmosis (RO) membrane units were combined as the second membrane separation stage. In the anaerobic expanded granular sludge bed (EGSB) reactor, about 43% organic matter in POME was converted into biogas, and COD reduction efficiency reached 93% and 22% in EGSB and the following aerobic reactor, respectively. With the treatment in the first biological stage, suspended solids and oil also decreased to a low degree. All these alleviated the membrane fouling and prolonged the membrane life. In the membrane process unit, almost all the suspended solids were captured by UF membranes, while RO membrane excluded most of the dissolved solids or inorganic salts from RO permeate. After the whole treatment processes, organic matter in POME expressed by BOD and COD was removed almost thoroughly. Suspended solids and color were not detectable in RO permeate any more, and mineral elements only existed in trace amount (except for K and Na). The high-quality effluent was crystal clear and could be used as the boiler feed water.
基金support provided by the Ministry of Higher Education Malaysia under Malaysia Research University Network Grant(Grant No.4L862)the research support provided by Universiti Teknologi Malaysia.
文摘Polyamide thin film composite membranes have dominated current reverse osmosis market on account of their excellent separation performances compared to the integrally skinned counterparts.Despite their very promising separation performance,chlorine-induced degradation resulted from the susceptibility of polyamide toward chlorine attack has been regarded as the Achilles’s heel of polyamide thin film composite.The free chlorine species present during chlorine treatment can impair membrane performance through chlorination and depolymerization of the polyamide selective layer.From material point of view,a chemically stable membrane is crucial for the sustainable application of membrane separation process as it warrants a longer membrane lifespan and reduces the cost involved in membrane replacement.Various strategies,particularly those involved membrane material optimization and surface modifications,have been established to address this issue.This review discusses membrane degradation by free chlorine attack and its correlation with the surface chemistry of polyamide.The advancement in the development of chlorine resistant polyamide thin film composite membranes is reviewed based on the state-of-the-art surface modifications and tailoring approaches which include the in situ and postfabrication membrane modifications using a broad range of functional materials.The challenges and future directions in this field are also highlighted.
基金We gratefully acknowledge the financial support from the National Natural Science Foundation of China(Grant No.21576205)the Tianjin Natural Science Foundation(Grant No.18JCTPJC48600)the Training Project of Innovation Team of Colleges and Universities in Tianjin(GrantNo.TD13-5020).
文摘The increasing applications of seawater desalination technology have led to the wide usage of polyamide reverse osmosis membranes,resulting in a large number of wasted reverse osmosis membranes.In this work,the base nonwoven layer of the wasted reverse osmosis membrane was successfully modified into the hydrophobic membrane via surface deposition strategy including TiO_(2) and 1H,1H,2H,2H-perfluorooctyltrichlorosilane(PFOTS),respectively.Various techniques were applied to characterize the obtained membranes,which were then used to separate the oil–water system.The optimally modified membrane displayed good hydrophobicity with a contact angle of 135.2°±0.3°,and its oil–water separation performance was as high as 97.8%.After 20 recycle tests,the oil–water separation performance remained more than 96%,which was attributed to the film adhesion of the anchored TiO_(2) and PFOTS layer on the surface.This work might provide a new avenue for recycling the wasted reverse osmosis membrane used in oily wastewater purification.
文摘聚酰胺反渗透膜是目前广泛应用的一款商用化水处理膜。然而其表面活性层聚酰胺的结构致密,会导致水通量与截盐率出现“trade-off”现象。针对该问题提出,选择具有多孔结构的、亲水性超交联聚合物复合材料作为添加剂,在界面聚合过程中引入聚酰胺活性层中,为水分子提供更多水通道。同时,纯烃本质的超交联聚合物与聚酰胺的高度相容性,保证了反渗透复合膜的高效截盐性能。经过脱盐性能测试,结果显示添加3.0 mg PDA@HCP-B-SO_(3)H的反渗透复合膜具有最高的水通量为44.4 L·m^(-2)·h^(-1),截盐率高达99.6%。相比于聚酰胺反渗膜,3.0-PDA@HCP-B-SO_(3)H PA RO的水通量提升了26.5%,截盐率基本保持不变;相比于只嫁接-SO_(3)H的HCP-B-SO_(3)H PA RO,水通量提升了11.6%(35.0 L·m^(-2)·h^(-1)上升至39.8 L·m^(-2)·h^(-1)),截盐率基本持平。这说明添加具有多孔结构的、亲水性强的改性超交联聚合物作为添加剂,是一种十分有效地提升聚酰胺反渗透膜性能的方法。