期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
改进YOLOv5的沥青路面病害检测算法 被引量:4
1
作者 杨振 李林 +2 位作者 罗文婷 倪昌双 傅幼华 《计算机工程与设计》 北大核心 2023年第11期3360-3372,共13页
为提升沥青路面病害自动化识别的准确率,提出一种特征网络增强算法(YOLO-EH)。该网络包含一种可以与CBAM注意力机制进行结合的新型特征增强模块(FEM)以及一种可以对FPN添加反馈链接的新型逆向二次循环特征金字塔网络(RCFPN)。实验结果表... 为提升沥青路面病害自动化识别的准确率,提出一种特征网络增强算法(YOLO-EH)。该网络包含一种可以与CBAM注意力机制进行结合的新型特征增强模块(FEM)以及一种可以对FPN添加反馈链接的新型逆向二次循环特征金字塔网络(RCFPN)。实验结果表明,与原YOLOv5算法相比,YOLO-EH对于同一批路段数据在平均病害识别准确率上提高了2.6个百分点,验证了其准确性与有效性。 展开更多
关键词 深度学习 沥青路面病害识别 目标检测 YOLOv5 注意力机制 特征增强模块 逆向二次循环特征金字塔网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部