期刊文献+
共找到265篇文章
< 1 2 14 >
每页显示 20 50 100
Strong metal-support interactions between highly dispersed Cu^(+) species and ceria via mix-MOF pyrolysis toward promoted water-gas shift reaction
1
作者 Xiao-Chen Sun Xing-Chi Li +7 位作者 Ze-Wei Xie Chen-Yue Yuan De-Jiu Wang Qian Zhang Xiao-Yu Guo Hao Dong Hai-Chao Liu Ya-Wen Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期475-483,共9页
The modulation of metal-support interfacial interaction is significant but challenging in the design of high-efficiency and high-stability supported catalysts.Here,we report a synthetic strategy to upgrade Cu-CeO_(2)i... The modulation of metal-support interfacial interaction is significant but challenging in the design of high-efficiency and high-stability supported catalysts.Here,we report a synthetic strategy to upgrade Cu-CeO_(2)interfacial interaction by the pyrolysis of mixed metal-organic framework(MOF)structure.The obtained highly dispersed Cu/CeO_(2)-MOF catalyst via this strategy was used to catalyze water-gas shift reaction(WGSR),which exhibited high activity of 40.5μmolCOgcat^(-1).s^(-1)at 300℃and high stability of about 120 h.Based on comprehensive studies of electronic structure,pyrolysis strategy has significant effect on enhancing metal-support interaction and then stabilizing interfacial Cu^(+)species under reaction conditions.Abundant Cu^(+)species and generated oxygen vacancies over Cu/CeO_(2)-MOF catalyst played a key role in CO molecule activation and H2O molecule dissociation,respectively.Both collaborated closely and then promoted WGSR catalytic performance in comparison with traditio nal supported catalysts.This study shall offer a robust approach to harvest highly dispersed catalysts with finely-tuned metal-support interactions for stabilizing the most interfacial active metal species in diverse heterogeneous catalytic reactions. 展开更多
关键词 Cu-based catalyst MOF derivative water-gas shift reaction Metal-support interaction
下载PDF
Effect of precipitants on Ni-CeO_2 catalysts prepared by a co-precipitation method for the reverse water-gas shift reaction 被引量:11
2
作者 王路辉 刘辉 +2 位作者 刘源 陈英 杨淑清 《Journal of Rare Earths》 SCIE EI CAS CSCD 2013年第10期969-974,共6页
A series of Ni-CeO2 catalysts were prepared by co-precipitation method with Na2CO3, NaOH, and mixed precipitant (Na2CO3:NaOH; 1:1 ratio) as precipitant, respectively. The effect of the precipitants on the catalyti... A series of Ni-CeO2 catalysts were prepared by co-precipitation method with Na2CO3, NaOH, and mixed precipitant (Na2CO3:NaOH; 1:1 ratio) as precipitant, respectively. The effect of the precipitants on the catalytic performance, physical and chemical properties of Ni-CeO2 catalysts was investigated with the aid of X-ray diffraction (XRD), Bmmaner-Emmett-Teller method (BET), Fou- rier-transform infrared spectroscopy (FT-IR), thermogravimetry (TG), and H2-TPR characterizations. The Ni-CeO2 catalysts were exam- ined with respect to their catalytic performance for the reverse water-gas shift reaction, and their catalytic activities were ranked as: Ni-CeO2-CP (Na2CO3:NaOH=I:I)〉Ni-CeO2-CP(Na2CO3)〉Ni-CeO2-CP(NaOH)- Correlating to the characteristic results, it was found that the catalyst prepared by co-precipitation with mixed precipitant (Na2CO3:NaOH; 1:1 ratio) as precipitant hadthe most amount of oxygen vacancies accompanied with highly dispersed Ni particles, which made the corresponding Ni-CeO2-CP(Na2CO3:NaOH=I: 1) catalyst exhibit the highest catalytic activity. While the precipitant of Na2CO3 or NaOH resulted in less or no oxygen vacancies in Ni-CeO2 catalysts. As a result, Ni-CeO2-CP(Na2CO3) and Ni-CeO2-CP(NaOH) catalysts presented poor catalytic performance. 展开更多
关键词 reverse water-gas shift reaction Ni-CeO2 catalyst CO-PRECIPITATION oxygen vacancy PRECIPITANT rare earths
原文传递
Influence of preparation method on performance of Ni-CeO_2 catalysts for reverse water-gas shift reaction 被引量:10
3
作者 王路辉 刘辉 +2 位作者 刘源 陈英 杨淑清 《Journal of Rare Earths》 SCIE EI CAS CSCD 2013年第6期559-564,共6页
This study investigated 1 wt.% Ni-CeO2 catalysts that were prepared using co-precipitation, deposition-precipitation, and impregnation methods for the reverse water-gas shift (RWGS) reaction. Characterizations of th... This study investigated 1 wt.% Ni-CeO2 catalysts that were prepared using co-precipitation, deposition-precipitation, and impregnation methods for the reverse water-gas shift (RWGS) reaction. Characterizations of the catalyst samples were conducted by Brumauer-Emmett-Teller (BET), atomic absorption spectrophotometer (AAS), X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) and temperature programmed reduction (TPR). The results showed that the Ni-CeO2 catalyst prepared using the co-precipitation method exhibited the best catalytic performance. In the Ni-CeO2 catalyst prepared using co-precipitation method, a combination of highly dispersed NiO and abundant oxygen vacancies was assumed to play a crucial role in determining the catalytic activity and selectivity of the RWGS reaction. 展开更多
关键词 reverse water-gas shift reaction NICKEL CEO2 oxygen vacancy rare earths
原文传递
Identifying the roles of Ce^(3+)-OH and Ce-H in the reverse water-gas shift reaction over highly active Ni-doped CeO_(2) catalyst 被引量:1
4
作者 Haidong Shen Yujuan Dong +7 位作者 Shaowei Yang Yuan He Qimeng Wang Yueling Cao Wenbin Wang Tianshuai Wang Qiuyu Zhang Hepeng Zhang 《Nano Research》 SCIE EI CSCD 2022年第7期5831-5841,共11页
Nickel-CeO_(2)-based materials are commonly used for the thermal catalytic hydrogenation of CO_(2).However,high Ni loadings and low CO selectivity restrict their use in the reverse water–gas shift(RWGS)reaction.Herei... Nickel-CeO_(2)-based materials are commonly used for the thermal catalytic hydrogenation of CO_(2).However,high Ni loadings and low CO selectivity restrict their use in the reverse water–gas shift(RWGS)reaction.Herein,we demonstrate a highly active,robust,and low-Ni-doped(1.1 wt.%)CeO_(2) catalyst(1.0-Ni-CeO_(2)).The Ni-based-mass-specific CO formation rate reaches up to 1,542 mmol·gNi^(−1)·h^(−1) with 100%CO selectivity at 300°C for 100 h,among the best values reported in the literature.Density functional theory(DFT)and diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)results reveal that the enhanced catalytic activity is attributed to the abundant Ce–H species,while the high selectivity results from low CO affinity.More importantly,a new reaction mechanism is proposed,which involves the reduction of bicarbonate to generate formate intermediate and CO by the H−released from Ce–H species.The new findings in this work will benefit the design of economic,efficient,and robust catalysts for low-temperature RWGS reactions. 展开更多
关键词 CO_(2)hydrogenation Ni-doped CeO_(2) reverse water-gas shift(RWGS)reaction cerium hydride mechanism investigation
原文传递
Reverse water gas shift reaction over Co-precipitated Ni-CeO_2 catalysts 被引量:13
5
作者 王路辉 张少星 刘源 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第1期66-70,共5页
The Ni-CeO2 catalysts with different Ni contents were prepared by a co-precipitation method and used for Reverse Water Gas Shift (RWGS) reaction. 2wt.%Ni-CeO2 showed excellent catalytic performance in terms of activ... The Ni-CeO2 catalysts with different Ni contents were prepared by a co-precipitation method and used for Reverse Water Gas Shift (RWGS) reaction. 2wt.%Ni-CeO2 showed excellent catalytic performance in terms of activity, selectivity, and stability for RWGS reaction. Characterizations of the catalyst samples were conducted by XRD and TPR. The results indicated that, in Ni-CeO2 catalysts, there were three kinds of nickel, nickel ions in ceria lattice, highly dispersed NiO and bulk NiO. Oxygen vacancies were formed in CeO2 lattice due to the incorporation of Ni^2+ ions into ceria lattice. Oxygen vacancies formed in ceria lattice and highly dispersed Ni were key active components for RWGS, and bulk Ni was key active component for methanation of CO2. 展开更多
关键词 reverse water gas shift reaction NICKEL CEO2 oxygen vacancy
下载PDF
Catalytic Reduction of CO2 to CO via Reverse Water Gas Shift Reaction:Recent Advances in the Design of Active and Selective Supported Metal Catalysts 被引量:13
6
作者 Min Zhu Qingfeng Ge Xinli Zhu 《Transactions of Tianjin University》 EI CAS 2020年第3期172-187,共16页
The catalytic conversion of CO2 to CO via a reverse water gas shift(RWGS)reaction followed by well-established synthesis gas conversion technologies may provide a potential approach to convert CO2 to valuable chemical... The catalytic conversion of CO2 to CO via a reverse water gas shift(RWGS)reaction followed by well-established synthesis gas conversion technologies may provide a potential approach to convert CO2 to valuable chemicals and fuels.However,this reaction is mildly endothermic and competed by a strongly exothermic CO2 methanation reaction at low temperatures.Therefore,the improvement in the low-temperature activities and selectivity of the RWGS reaction is a key challenge for catalyst designs.We reviewed recent advances in the design strategies of supported metal catalysts for enhancing the activity of CO2 conversion and its selectivity to CO.These strategies include varying support,tuning metal–support interactions,adding reducible transition metal oxide promoters,forming bimetallic alloys,adding alkali metals,and enveloping metal particles.These advances suggest that enhancing CO2 adsorption and facilitating CO desorption are key factors to enhance CO2 conversion and CO selectivity.This short review may provide insights into future RWGS catalyst designs and optimization. 展开更多
关键词 Carbon dioxide reverse water gas shift reaction METHANATION SUPPORTED metal CATALYST Mechanism
下载PDF
Effects of CeO_2 on structure and properties of Ni-Mn-K/bauxite catalysts for water-gas shift reaction 被引量:3
7
作者 江莉龙 叶炳火 魏可镁 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第3期352-356,共5页
Multiple-metal catalysts (Ni-Mn-Ce-K/bauxite) for Water-Gas Shift (WGS) reaction were prepared by impregnation, and the catalytic structure and properties were investigated by N2 physical, XRD, H2-TPR, and CO-TPD.... Multiple-metal catalysts (Ni-Mn-Ce-K/bauxite) for Water-Gas Shift (WGS) reaction were prepared by impregnation, and the catalytic structure and properties were investigated by N2 physical, XRD, H2-TPR, and CO-TPD. The results indicated that the addition of 7.5% CeO2 improved the activity of the WGS reaction obviously, and also increased the specific surface area and pore volume of the catalysts. The addition of CeO2 decreases the reduction temperature, enhanced the adsorption and activation of H2O2, and improved the adsorption content of CO. Besides, active sites were not changed and the number of active sites on catalysts did not increase obviously. 展开更多
关键词 IMPREGNATED water-gas shift BAUXITE CEO2 rare earths
下载PDF
Copper Promoted Au/ZnO-CuO Catalysts for Low Temperature Water-gas Shift Reaction 被引量:2
8
作者 LIAN Hong-lei JIA Ming-jun +2 位作者 PAN Wei-cheng ZHANG Wen-xiang JIANG Da-zhen 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2006年第1期99-102,共4页
Various copper promoted Au/ZnO-CuO catalysts with different atomic ratios of Cu to Zn prepared by means of co-precipitation were tested for the low temperature water-gas shift(WGS) reaction. The catalytic activity o... Various copper promoted Au/ZnO-CuO catalysts with different atomic ratios of Cu to Zn prepared by means of co-precipitation were tested for the low temperature water-gas shift(WGS) reaction. The catalytic activity of the catalyst depends largely on the ratio of Cu to Zn. The addition of an appropriate amount of copper can considerably improve both the catalytic activity and the stability of the catalyst in comparison with those of copper-free Au/ZnO cata- lysts. The enhanced reducibility of copper oxide in the Au/ZnO-CuO ternary-component catalysts, which was confirmed by H2-TPR, may be related to the high activity and stability of the catalyst for the low temperature WGS reaction. 展开更多
关键词 water-gas shift reaction ZNO CUO GOLD
下载PDF
Preparation and characterization of Cu-Ce-La mixed oxide as water-gas shift catalyst for fuel cells application 被引量:2
9
作者 智科端 刘全生 +2 位作者 赵瑞岗 何润霞 张利峰 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第4期538-543,共6页
Cu-Ce-La mixed oxides were prepared by three precipitation methods (coprecipitation, homogeneous precipitation, and deposition precipitation) with variable precipitators and characterized using X-ray diffraction, BE... Cu-Ce-La mixed oxides were prepared by three precipitation methods (coprecipitation, homogeneous precipitation, and deposition precipitation) with variable precipitators and characterized using X-ray diffraction, BET, temperature-programmed reduction, and catalytic reaction for the water-gas shift. The Cu-Ce-La mixed oxide prepared by coprecipitation method with NaOH as precipitator presented the highest activity and thermal stability. Copper ion substituted quadrevalent ceria entered CeO2 (111) framework was in favor of activity and thermal stability of catalyst. The crystallinity of fresh catalysts increased with the reduction process. La^3+ or Ce^4+ substituted copper ion entered the CeO2 framework during reduction process. The coexistence of surface copper oxide (crystalline) and pure bulk crystalline copper oxide both contributed to the high activity and thermal stability of Cu-Ce-La mixes oxide catalyst. 展开更多
关键词 Cu-Ce-La mixed oxide water-gas shift reaction PRECIPITATION precipitator rare earths
下载PDF
Effects of the partial replacement of La by M(M=Ce,Ca and Sr) in La_(2-x)M_xCuO_4 perovskites on catalysis of the water-gas shift reaction 被引量:1
10
作者 S.S.Maluf E.M.Assaf 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第6期567-574,共8页
The performance of La2-x M x CuO4 perovskites (where M=Ce,Ca or Sr) as catalysts for the water-gas shift reaction was investigated at 290℃ and 360℃.The catalysts were characterized by EDS,XRD,N2 adsorption-desorpt... The performance of La2-x M x CuO4 perovskites (where M=Ce,Ca or Sr) as catalysts for the water-gas shift reaction was investigated at 290℃ and 360℃.The catalysts were characterized by EDS,XRD,N2 adsorption-desorption,XPS and XANES.The XRD results showed that all the perovskites exhibited a single phase (the presence of perovskite structure),suggesting the incorporation of metals in the perovskite structure.The XPS and XANES results showed the presence of Cu2+ on the surface.The perovskites that exhibited the best catalytic performance were La 2 x Ce x CuO 4 perovskites,with CO conversions of 85% 90%.Moreover,these perovskites have higher surface areas and larger amounts of Cu on the surface.And Ce has a higher filled energy level than the other metals,increasing the energy of the valence band of Ce and providing more electrons for the reaction.Besides,the La1.80Ca0.20CuO4 perovskite showed a good catalytic performance. 展开更多
关键词 perovskites water-gas shift reaction LANTHANUM copper calcium CERIUM STRONTIUM
下载PDF
Effects of ZrO_2 Content on Structure and Performance of Cu/CeO_2-ZrO_2 Catalysts for Water-Gas Shift Reaction 被引量:1
11
作者 郑云弟 林性贻 +3 位作者 郑起 詹瑛瑛 李达林 魏可镁 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第6期685-689,共5页
Cu/CeO2-ZrO2 catalysts for water-gas shift (WGS) reaction were prepared with co-precipitation method, and the influence of ZrO2 content on the catalytic structure and properties was investigated by the techniques of... Cu/CeO2-ZrO2 catalysts for water-gas shift (WGS) reaction were prepared with co-precipitation method, and the influence of ZrO2 content on the catalytic structure and properties was investigated by the techniques of N2 physical adsorption analysis, XRD and H2-TPR. The results indicate that the BET surface areas of the catalysts are increased in varying degrees due to the presence of ZrO2. With increasing ZrO2 content, the pore size distribution is centered on 1.9 nm. ZrO2 can efficiently restrain the growth of Cu crystal particles. The appropriate amount of ZrO2 in the Cu/CeO2 catalysts can help the catalyst keep better copper dispersion in the WGS reaction, which can lead to both higher catalytic activity and better thermal stability. When ZrO2 content is 10% (atom fraction), Cu/CeO2-Zr02 catalyst reaches a CO conversion rate of 73.7% at the reaction temperature of 200℃. 展开更多
关键词 water-gas shift Cu/CeO2-ZrO2 catalyst rare earths
下载PDF
A Novel γ-Alumina Supported Fe-Mo Bimetallic Catalyst for Reverse Water Gas Shift Reaction 被引量:10
12
作者 Abolfazl Gharibi Kharaji Ahmad Shariati Mohammad Ali Takassi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第9期1007-1014,共8页
在反向的水气体,移动(RWGS ) 反应 CO2 被变换成能接着被用来生产象甲醇那样的有益的化学药品的公司。在现在的学习, Mo/Al2O3, Fe/Al2O3 和 Fe-Mo/Al2O3,催化剂是用受精方法的 synthesised。催化剂的结构用 X 光检查衍射(XRD ) 被... 在反向的水气体,移动(RWGS ) 反应 CO2 被变换成能接着被用来生产象甲醇那样的有益的化学药品的公司。在现在的学习, Mo/Al2O3, Fe/Al2O3 和 Fe-Mo/Al2O3,催化剂是用受精方法的 synthesised。催化剂的结构用 X 光检查衍射(XRD ) 被学习, Brunauer-Emmett-Teller (赌注) 方法,诱导地联合的血浆原子排放分光计(ICP-AES ) ,温度规划了减小(H2-TPR ) ,公司化学吸着,精力散 X 光检查(EDX ) 和扫描电子显微镜学(SEM ) 技术。所有催化剂的运动性质为 RWGS 反应在一个批反应堆被调查。结果显示在 Fe-Mo/Al2O3 催化剂的结构的那瞬间存在作为与 Fe/Al2O3 相比提高它的活动。这改进可能由于更好的 Fe 分散和 Fe 种类的更小的粒子尺寸。Fe-Mo/Al2O3 催化剂的稳定性测试在一个固定的床反应堆和高公司收益被执行因为溪流上的时间的 60 h 被表明。3 阶段在新鲜、使用的催化剂的结构被发现的 Fe2 (MoO4 ) 。TPR 结果也显示 3 分阶段执行的 Fe2 (MoO4 ) 有低 reducibility,因此, 3 显著地分阶段执行的 Fe2 (MoO4 ) 在催化剂禁止留下的 Fe 氧化物的减小,导致了 Fe-Mo/Al2O3 的高稳定性催化剂。总的来说,这研究与高公司产量作为新奇催化剂介绍 Fe-Mo/Al2O3,几乎没有副产品并且为 RWGS 反应相当稳定。 展开更多
关键词 水煤气变换反应 双金属催化剂 铁氧化物 钼酸钆 氧化铝负载 电感耦合等离子体原子发射光谱仪 ICP-AES 扫描电子显微镜
下载PDF
Three-dimensionally ordered macro-porous Pt/TiO_2 catalyst used for water-gas shift reaction
13
作者 Hao Liang Yuan Zhang Yuan Liu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第4期403-408,共6页
Three-dimensionally ordered macro-porous (3DOM) Pt/TiO2 catalysts were prepared by template and impregnation methods, and the resultant samples were characterized by using TG-DTA, XRD, SEM, TEM, and TPR techniques. ... Three-dimensionally ordered macro-porous (3DOM) Pt/TiO2 catalysts were prepared by template and impregnation methods, and the resultant samples were characterized by using TG-DTA, XRD, SEM, TEM, and TPR techniques. The catalytic performance for water-gas shift (WGS) reaction was tested, and the influences of some conditions, such as reduction temperature of catalysts, the amount of Pt loadings and space velocity on catalytic performance were investigated. It was shown that Pt particles were homogeneously dispersed on 3DOM TiO2. The reduction of TiO2 surface was important for the catalytic performance. The activity test results showed that the 3DOM Pt/TiO2 catalysts exhibited very good catalytic performance for WGS reaction even at high space velocity, which was owing to the better mass transfer of 3DOM porous structure besides the high intrinsic activity of Pt/TiO2. 展开更多
关键词 three-dimensionally ordered macro-porous water-gas shift PLATINUM TITANIA
下载PDF
Potassium-decorated active carbon supported Co-Mo-based catalyst for water-gas shift reaction
14
作者 Yixin Lian RuiFen Xiao +1 位作者 Weiping Fang Yiquan Yang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第1期77-83,共7页
The effect of potassium-decoration was studied on the activity of water-gas shift (WGS) reaction over the Co-Mo-based catalysts supported on active carbon (AC), which was prepared by incipient wetness co-impregnat... The effect of potassium-decoration was studied on the activity of water-gas shift (WGS) reaction over the Co-Mo-based catalysts supported on active carbon (AC), which was prepared by incipient wetness co-impregnation method. The decoration of potassium on active carbon in advance enhances the activities of the CoMo-K/AC catalysts for WGS reaction. Highest activity (about 92% conversion) was obtained at 250 ? C for the catalyst with an optimum K 2 O/AC weight ratio in the range from 0.12 to 0.15. The catalysts were characterized by TPR and EPR, and the results show that activated carbon decorated with potassium makes Co-Mo species highly dispersed, and thus easily reduced and sulfurized. XRD results show that an appropriate content of potassium-decoration on active carbon supports may favors the formation of highly dispersed Co 9 S 8 -type structures which are situated on the edge or a site in contact with MoS 2 , K-Mo-O-S, Mo-S-K phase. Those active species are responsible for the high activity of CoMo-K/AC catalysts. 展开更多
关键词 active carbon potassium-decorated active phase Co-Mo-based catalyst water-gas shift
下载PDF
Influence of Gas Components on the Formation of Carbonyl Sulfide over Water-Gas Shift Catalyst B303Q
15
作者 Ju Shangguan Litong Liang Huiling Fan Fang Shen 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2007年第1期53-59,共7页
Water-gas shift reaction catalyst at lower temperature (200-400 ℃) may improve the conversion of carbon monoxide. But carbonyl sulfide was found to be present over the sulfided cobaltmolybdenum/alumina catalyst for... Water-gas shift reaction catalyst at lower temperature (200-400 ℃) may improve the conversion of carbon monoxide. But carbonyl sulfide was found to be present over the sulfided cobaltmolybdenum/alumina catalyst for water-gas shift reaction. The influences of temperature, space velocity, and gas components on the formation of carbonyl sulfide over sulfided cobalt-molybdenum/alumina catalyst B303Q at 200-400 ℃ were studied in a tubular fixed-bed quartz-glass reactor under simulated water-gas shift conditions. The experimental results showed that the yield of carbonyl sulfide over B303Q catalyst reached a maximum at 220 ℃ with the increase in temperature, sharply decreased with the increase in space velocity and the content of water vapor, increased with the increase in the content of carbon monoxide and carbon dioxide, and its yield increased and then reached a stable value with the increase in the content of hydrogen and hydrogen sulfide. The formation mechanism of carbonyl sulfide over B303Q catalyst at 200-400 ℃ was discussed on the basis of how these factors influence the formation of COS. The yield of carbonyl sulfide over B303Q catalyst at 200-400 ℃ was the combined result of two reactions, that is, COS was first produced by the reaction of carbon monoxide with hydrogen sulfide, and then the as-produced COS was converted to hydrogen sulfide and carbon dioxide by hydrolysis. The mechanism of COS formation is assumed as follows: sulfur atoms in the Co9Ss-MoS2/Al2O3 crystal lattice were easily removed and formed carbonyl sulfide with CO, and then hydrogen sulfide in the water-gas shift gas reacted with the crystal lattice oxygen atoms in CoO-MoOa/Al2O3 to form Co9S8-MoS2/Al2O3. This mechanism for the formation of COS over water-gas shift catalyst B303Q is in accordance with the Mars-Van Krevelen's redox mechanism over metal sulfide. 展开更多
关键词 FORMATION carbonyl sulfide sulfided cobalt-molybdenum/alumina catalyst water-gas shift
下载PDF
Effect of yttrium addition on water-gas shift reaction over CuO/CeO_2 catalysts
16
作者 佘育生 李雷 +3 位作者 詹瑛瑛 林性贻 郑起 魏可镁 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第3期412-418,共7页
This paper presented a study on the role of yttrium addition to CuO/CeO2 catalyst for water-gas shift reaction. A single-step co-precipitation method was used for preparation of a series of yttrium doped CuO/CeO2 cata... This paper presented a study on the role of yttrium addition to CuO/CeO2 catalyst for water-gas shift reaction. A single-step co-precipitation method was used for preparation of a series of yttrium doped CuO/CeO2 catalysts with yttrium content in the range of 0-5wt.%. Properties of the obtained samples were characterized and analyzed by X-ray diffraction (XRD), Raman spectroscopy, H2-TPR, cyclic voltammetry (CV) and the BET method. The results revealed that catalytic activity was increased with the yttrium content at first, but then decreased with the further increase of yttrium content. Herein, CuO/CeO2 catalyst doped with 2wt.% of yttrium showed the highest catalytic activity (CO conversion reaches 93.4% at 250 ℃) and thermal stability for WGS reaction. The catalytic activity was correlated with the surface area, the area of peak γ of H2-TPR profile (i.e., the reduction of surface copper oxide (crystalline forms) interacted with surface oxygen vacancies on ceria), and the area of peak C2 and A1 (Cu^0→←Cu^2+ in cyclic voltammetry process), respectively. Besides, Raman spectra provided evidences for a synergistic Cu-Ovacancy interaction, and it was indicated that doping yttrium may facilitate the formation of oxygen vacancies on ceria. 展开更多
关键词 CuO/CeO2 catalyst water-gas shift YTTRIUM cyclic voltammetry rare earths
下载PDF
A Modified Co-precipitation Method to Prepare Cu/ZnO/Al2O3 Catalyst and Its Application in Low Temperature Water-gas Shift(LT-WGS)Reaction
17
作者 许龙龙 PENG Dong +4 位作者 LIU Wenhui FENG Yimin HOU Yanan LI Xiongjian 黄驰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第4期876-883,共8页
A modified co-precipitation method for the production of Cu/ZnO/Al2O3 complex was studied. The modification was that part of Al was introduced by adding Al^(3+) into Cu^(2+)/Zn^(2+) solution, and the rest of ... A modified co-precipitation method for the production of Cu/ZnO/Al2O3 complex was studied. The modification was that part of Al was introduced by adding Al^(3+) into Cu^(2+)/Zn^(2+) solution, and the rest of Al was added after co-precipitation step in the form of pseudo-boehmite. The prepared samples were characterized by different techniques such as X-ray diffraction, N2 adsorption, H2-N2O titration, temperature programmed reduction and scanning electron microscopy. X-ray diffraction characterizations revealed that Al^(3+) can be doped in aurichalcite lattice, and the maximum doping amount of Al^(3+) was 5.0% of total Cu and Zn atoms. The Cu/ZnO/Al2O3 sample produced by the modified method, in which co-precipitated Al^(3+) was 2.5% of total Cu and Zn atoms showed much better activity and stability in water-gas shift reaction than commercial sample. The high Cu surface area(26.1 m^2/g) obtained by decompositon of doped aurichalcite is believed to be responsible for the activity enhancement. The stability was enhanced mainly because of the support effect of γ-Al2O3, which was decomposed from pseudo-boehmite in the calcination step. 展开更多
关键词 Cu/ZnO/Al2O3 CO-PRECIPITATION water-gas shift aurichalcite
下载PDF
Selective synthesis of carbon monoxide via formates in reverse water–gas shift reaction over alumina-supported gold catalyst
18
作者 Nobuhiro Ishito Kenji Hara +1 位作者 Kiyotaka Nakajima Atsushi Fukuoka 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第2期304-308,共5页
Thermal decomposition of formic acid on SiO2, CeO2 and γ-Al2O3 was studied as an elementary step of reverse water–gas shit reaction(RWGS) over supported Au catalysts. γ-Al2O3 showed the highest CO selectivity amo... Thermal decomposition of formic acid on SiO2, CeO2 and γ-Al2O3 was studied as an elementary step of reverse water–gas shit reaction(RWGS) over supported Au catalysts. γ-Al2O3 showed the highest CO selectivity among the tested oxides in the decomposition of formic acid. Infrared spectroscopy showed the formation of four formate species on γ-Al2O3: three η~1-type and one μ~2-type species, and these formates decomposed to CO at 473 K or higher. Au-loaded γ-Al2O3 samples were prepared by a depositionprecipitation method and used as catalysts for RWGS. The supported Au catalyst gave CO with high selectivity over 99% from CO2 and H2, which is attributed to the formation of formates on Au and subsequent decomposition to CO on γ-Al2O3. 展开更多
关键词 reverse water–gas shift reaction Carbon dioxide Hydrogen Formate Carbon monoxide Alumina Gold
下载PDF
Insight into the Role of Isolated Gold Atoms-Ceria Conjunction in Catalyzing the Water-Gas Shift Reaction
19
作者 Xin-Pu Fu Hui-Zhao +1 位作者 Wei-Wei Wang Chun-Jiang Jia 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2024年第6期636-644,共9页
As the promising catalysts for the water-gas shift(WGS)reaction,the activity of Au-CeO_(2) composites is susceptible to the aggregation size and electronic state of Au species.Previous reports were extensively focused... As the promising catalysts for the water-gas shift(WGS)reaction,the activity of Au-CeO_(2) composites is susceptible to the aggregation size and electronic state of Au species.Previous reports were extensively focused on the discrepancy between nonmetallic Au and metallic Au nanoparticles,whereas the understanding of the authentic role of the isolated Au atoms was limited.Herein,we investigated the catalytic behavior and structural information over two types of Au/CeO_(2) catalysts,in which the predominant conjunctions were isolated Au1-CeO_(2) and Aun-CeO_(2),respectively.Based on comprehensive characterizations,particularly by in-situ Raman and in-situ DRIFTS,we found that the isolated Au atoms were responsible for enhancing the reducibility of the CeO_(2) matrix.The CO adsorption ability on the isolated Au sites was significantly inferior to clustered Au atoms,especially at relatively high temperatures(>200°C).As a result,the boosted O vacancy on the isolated Au1-CeO_(2) conjunctions could improve the H2O activation ability for the Au-CeO_(2) catalysts and demonstrate a comparable activity to the clustered Aun-CeO_(2) sites.This work might deepen understanding of the catalytic function for the isolated Au1 site within Au/CeO_(2) systems while catalyzing the WGS reaction. 展开更多
关键词 Isolated Au atoms Ceria-based catalysts water-gas shift reaction Defect Adsorption
原文传递
Theoretical and experimental investigations on single-atom catalysis:Pt1/FeOx for water-gas shift reaction Shan-Fei Wang1,§,Yangyang Li2,3,§,Haiyan Wang1,Jin-Xia Liang1(✉),Chun Zhu1
20
作者 Shan-Fei Wang Yangyang Li +3 位作者 Haiyan Wang Jin-Xia Liang Chun Zhu Botao Qiao 《Nano Research》 SCIE EI CSCD 2024年第9期8627-8637,共11页
Oxide-supported metal single-atom catalysts(SACs)have exhibited excellent catalytic performance for water-gas shift(WGS)reaction.Here,we report the single-atom catalyst Pt1/FeOx exhibits excellent medium temperature c... Oxide-supported metal single-atom catalysts(SACs)have exhibited excellent catalytic performance for water-gas shift(WGS)reaction.Here,we report the single-atom catalyst Pt1/FeOx exhibits excellent medium temperature catalytic performance for WGS reactions by the density functional theory(DFT)calculations and experimental results.The calculations indicate that H_(2)O molecules are easily dissociated at oxygen vacancies,and the formed*OH and*O are adsorbed on Pt1 single atoms and the adjacent O atoms,respectively.After studying four possible reaction mechanisms,it is found that the optimal WGS reaction pathway is proceeded along the carboxyl mechanism(pathway III),in which the formation of*COOH intermediates can promote the stability of Pt1/FeOx SAC and the easier occurrence of WGS reaction.The energy barrier of the rate-determining step during the entire reaction cycle is only 1.16 eV,showing the high activity for the medium temperature WGS reaction on Pt1/FeOx SAC,which was verified by experimental results.Moreover,the calculated turnover frequencies(TOFs)of CO_(2)and H_(2)formation on Pt1/FeOx at 610 K(337℃)can reach up to 1.14×10^(-3)s^(-1)·site^(-1)through carboxyl mechanism.In this work,we further expand the application potential of Pt1/FeOx SAC in WGS reaction. 展开更多
关键词 water-gas shift(WGS)reaction single-atom catalyst(SAC) density functional theory(DFT) thermocatalysis
原文传递
上一页 1 2 14 下一页 到第
使用帮助 返回顶部