The skin effect in the reversely switched dynistor (RSD) devices is investigated in this paper. Based on the plasma bipolar drift model of the RSD, the current density distributions on the chip are simulated with co...The skin effect in the reversely switched dynistor (RSD) devices is investigated in this paper. Based on the plasma bipolar drift model of the RSD, the current density distributions on the chip are simulated with considering the skin effect. The results indicate that the current density on the border can be several hundred to a thousand A/cm2 higher than that in the center of the chip. The skin effect becomes more prominent as the voltage increases and the inductance decreases in the main circuit. The phenomenon that most of a certain group of chips break over on the border has proved the existence of the skin effect.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.50577028the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20050487044the China Postdoctoral Science Foundation under Grant No.20080440931
文摘The skin effect in the reversely switched dynistor (RSD) devices is investigated in this paper. Based on the plasma bipolar drift model of the RSD, the current density distributions on the chip are simulated with considering the skin effect. The results indicate that the current density on the border can be several hundred to a thousand A/cm2 higher than that in the center of the chip. The skin effect becomes more prominent as the voltage increases and the inductance decreases in the main circuit. The phenomenon that most of a certain group of chips break over on the border has proved the existence of the skin effect.