In this study, the CaP/pDNA nanoparticles were prepared using Triton X-100/Butanol/Cyclohexane/Water reverse microemulsion system. Optimization of preparation conditions was based on evaluation of particle size by Box...In this study, the CaP/pDNA nanoparticles were prepared using Triton X-100/Butanol/Cyclohexane/Water reverse microemulsion system. Optimization of preparation conditions was based on evaluation of particle size by Box–Behnken design method. The particle sizes of the optimized CaP/pDNA nanoparticles were found to be 60.23 ± 4.72 nm, polydispersity index was 0.252 and pDNA encapsulate efficiency was more than 90%. The optimized CaP/pDNA nanoparticles have pH sensitivity and biocompatibility. Further, optimized CaP/pDNA nanoparticles showed higher transfection efficiency.展开更多
基金the Natural Science Foundation Committee of China for the financial support (No.81173004 and No.81202483)
文摘In this study, the CaP/pDNA nanoparticles were prepared using Triton X-100/Butanol/Cyclohexane/Water reverse microemulsion system. Optimization of preparation conditions was based on evaluation of particle size by Box–Behnken design method. The particle sizes of the optimized CaP/pDNA nanoparticles were found to be 60.23 ± 4.72 nm, polydispersity index was 0.252 and pDNA encapsulate efficiency was more than 90%. The optimized CaP/pDNA nanoparticles have pH sensitivity and biocompatibility. Further, optimized CaP/pDNA nanoparticles showed higher transfection efficiency.